温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
细胞周期
同步
诱导
方法
peteadam@
2013/1/10
DIAMONDS Deliverable 1-D1.1.3
State-of-the-art in human cell synchronization.
DIAMONDS PARTNER: Kristian Helin,
Biotech Research and Innovation Centre (BRIC), University of Copenhagen , Denmark
Synchronization protocols for human cells
I.) Double Thymidine block (early S-phase block)
- at 25-30% confluency of HeLa cell culture wash twice with 1xPBS and add DMEM (10%FCS, 1% Pen-Strep, 1% Glutamine) + 2mM Thymidine for 18 h (first block)
- after first Thymidine block: remove Thymidine by washing with 1xPBS;
add fresh DMEM (10%FCS, 1% Pen-Strep, 1% Glutamine) for 9h to release cells
- after releasing: add DMEM (10%FCS, 1% Pen-Strep, 1% Glutamine) + 2mM Thymidine for 17 h (second block)
- after second block: remove Thymidine by washing with 1xPBS; release cells by adding fresh DMEM (10%FCS, 1% Pen-Strep, 1% Glutamine)
Þ cells progress synchronously through G2- and mitotic phase
Figure A. Synchrony of HeLa cells. (A) Cells were arrested at the beginning of S phase by using a double thymidine block, and cell synchrony was monitored by flow cytometry of propidium iodide-stained cells. Flow cytometry data were collected for each of the three independent double thymidine blocks performed in this study; data are shown only for the second double thymidine arrest (Thy-Thy2), although equivalent synchrony was obtained in each of the three experiments. The number of cells (arbitrary units) is plotted against DNA content for time points at 4-h intervals for 44 h; an arrow indicates the time of mitosis, as estimated from the flow cytometry data. Upon release from the thymidine block, >95% of the cells progressed into S phase (0-4 h), entered G2 phase (5-6 h), underwent a synchronous mitosis at 7-8 h, and reentered S phase after completing one full cell cycle at 14-16 h. Typically two to three additional synchronous cell cycles were obtained.
MCB Vol. 13, Issue 6, 1977-2000, June 2002, Michael L. Whitfield et al.
II.) Thymidine-Nocodazole block (mitotic block)
- at 40% confluency of HeLa cell culture add DMEM (10%FCS, 1% Pen-Strep, 1% Glutamine) + 2mM Thymidine for 24 h (S-phase block)
- after Thymidine block: remove Thymidine by washing with 1xPBS;
add fresh DMEM (10%FCS, 1% Pen-Strep, 1% Glutamine) for 3h to release cells
- after releasing of the cells add 100ng/ml Nocodazole to the Media for
12h (mitotic block)
- remove Nocodazole by washing with 1xPBS and add fresh DMEM (10%FCS, 1% Pen-Strep, 1% Glutamine) to release cells
Þ cells progress synchronously through G1- and S-phase
Figure B. Cells were arrested in mitosis by blocking first in thymidine followed by release and then blocking in nocodazole. After release from the nocodazole block, most of the cells (>75%) divided synchronously within 2 h of release from the arrest, entered S phase by 10-12 h after release, and completed the next synchronous mitosis by 18-20 h, ultimately completing two full cell cycles.
MCB Vol. 13, Issue 6, 1977-2000, June 2002, Michael L. Whitfield et al.
III.) Serum starvation (G0/G1 block)
- at 30-40% cell confluency wash twice with 1xPBS and add DMEM (1% Pen-Strep, 1% Glutamine) w/o Serum
- after 72h restimulation with 10-15% Serum
C serum starvation
Figure C. Human diploid fibroblasts (Tig3) were arrested in G1-phase by serum starvation. After release from
G1 block, Cells entered S phase by 10-12 h after release, and completed the next synchronous mitosis by 30-48 h.
Cell synchrony was monitored by flow cytometry of BrdU and propidium iodide-stained cells.
4
D1.1.3: Optimised synchronisation protocol for yeasts, Arabidopsis, human cells