温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
重庆市
梁平县
春季
八年
级数
学期末
试题
福禄中学2023年春季八年级数学期末试题〔三〕
班级_______学号_________姓名____________总分_____________
一、选择题〔每题4分,共40分〕
1.以下各式中,正确的选项是 〔 〕
A. B. C. D.
2.据2023年末的统计数据显示,免除农村义务教育阶段学杂费的学生约为52023000名,这个数用科学记数法表示正确的选项是 〔 〕
A. B. C. D.
3.假设点P在第二象限,且点P到x轴、y轴的距离分别为4,3,那么点P的坐标是( )
A.〔4,3〕 B.〔3,-4〕 C.〔-3,4〕 D.〔-4,3〕
4.到三角形三边距离都相等的点是这个三角形的 〔 〕
A.三条中线的交点 B.三条角平分线的交点
C.三条高的交点 D.三边垂直平分线的交点
5.在函数中,自变量x取值范围是 〔 〕
A. B. C. D.
6.从一组数据中取出个,个,个组成一组新数据,那么组成的新数据的平均数为 ( )
A. B. C. D.
7.函数=在同一坐标系中的图象大致是〔 〕
8.在△ABC中,点E、D、F分别在AB、BC、AC上且DE∥CA,DF∥BA,以下四个判断中不正确的选项是 〔 〕
A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形
y
O
x
A
B
第10题
C.如果AD⊥BC,那么四边形AEDF是菱形
D.如果AD平分∠BAC,那么四边形AEDF是菱形
9.将矩形ABCD沿AE折叠,得到如以下图的图形,∠CED/=55°,那么∠BAD/的大小是( )
A.30° B.35° C.45° D.60°
10.如图,点A是一次函数y=x的图象与反比例函数y=的图象在第一象限内的交点,点B在x轴的负半轴上,且OA=OB,那么△AOB的面积为 〔 〕
A.2 B. C. D.2 .
二、填空题。〔每题4分,共24分〕
11.把命题“在直角三角形中,两条直角边的平方和等于斜边的平方。〞改写成“如果……,那么……〞的形式是 ;
它的逆命题是: 。
12.把9个数按从小到大的顺序排列,其平均数是9,如果这组数中前5个数的平均数是8,后5个数的平均数是10,那么这9个数的中位数是_______.
14题
13.,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A〔10,0〕、C〔0,4〕,点D是OA的中点,点P在BC边上运动,△ODP是腰长为5的等腰三角形时,点P的坐标为 。
y
x
P
D
C
B
A
O
13题
14.如图,在梯形纸片ABCD中,AB∥CD,AD=BC,AB=6,CD=3,将该梯形纸片沿对角线AC折叠,点D恰与AB边上的E点重合,那么∠B的度数为 。
15.假设点A〔2,y1〕、B〔6,y2〕在函数y=的图象上,那么y1_______y2〔填“<〞或“>〞〕。
16.甲、乙两人进行射击比赛,在相同条件下,各射击10次,他们的平均成绩为7环,10次射击成绩的方差分别是,,那么成绩比拟稳定的是___________.〔填“甲〞或“乙〞〕
三、解答以下各题。〔共86分〕
17.〔6分〕计算: 18 (6分〕解方程:
19 〔6分〕先化简,再求值:,其中。
20. 〔8分〕如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上一点,DE=BC.
〔1〕求证:∠E=∠DBC;
〔2〕判断△ACE的形状〔不需要说明理由〕.
21.〔10分〕如图,是某寻宝示意图,F为宝藏所在。AF∥BC,EC⊥BC,BA∥DE.BD∥AE.甲、乙两人同时从B出发.甲路线是B—A—E—F;乙路线是B—D—C—F.假设两人寻找速度与途中耽误时间相同,那么谁先找到宝藏.请说明理由.
第22题
第21题
22、〔10分〕我们来探究 “雪花曲线〞的有关问题:以以下图是边长为1的正三角形,将此正三角形的每条边三等分,而以居中的那一条线段为底边再作正三角形,然后以其两腰代替底边,得到第二个图形如以以下图;再将以以下图的每条边三等分,并重复上述的作法,得到第三个图形如以以下图。
〔1〕〔4分〕求第5个图形周长。
〔2〕〔6分〕求第n个图形与周长C的函数关系式。
23.〔10分〕将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′ 处,折痕为EF.
A
B
C
D
E
F
D′
〔1〕求证:△ABE≌△AD′F;
〔2〕连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.
(第22题图)
24〔10分〕:如图,在平面直角坐标系xoy中,一次函数y= x+3的图象与x轴和y轴交于A、B两点,将△AOB绕点O顺时针旋转90°后得到
△A´OB´.
〔1〕求直线A´B´的解析式;
〔2〕假设直线A´B´与直线AB相交于点C,求S△A´BC∶S△ABO的值.
25.〔10分〕某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元,另一种是会员卡租碟,办卡费每月12元,租碟每张0.4元,小郑经常来该店租碟。假设每月租碟数量为x张。
〔1〕写出零星租碟方式每月应付金额y1元及会员卡租碟方式每月应付金额y2元与租碟数量x张之间的函数关系式;
〔2〕假设小郑方案7月份租碟30张,试问选择哪种租碟方式较省钱,请计算说明;
〔3〕当x为何值时,采用零星租碟合算?
26.〔10分〕如图,正方形绕点逆时针旋转后得到正方形,边与交于点.
〔1〕以图中已标有字母的点为端点连结两条线段〔正方形的对角线除外〕,要求所连结的两条线段相交且互相垂直,并说明这两条线段互相垂直的理由;
〔2〕假设正方形的边长为,假设旋转的角度为30°,求重叠局部〔四边形〕的面积。
〔1〕我连结的两条相交且互相垂直的线段是___ ___和____ __.
G
D
O
C
F
E
B
A
理由如下: