温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
g31028
数列
综合
应用
doc
高中数学
g3.1028数列的综合应用
一、知识回忆
1. 数列的概念,等差、等比数列的根本概念;
2. 等差、等比数列的通项、前n项和公式;
3. 等差、等比数列的重要性质;
4. 与数列知识相关的应用题;
5. 数列与函数等相联系的综合问题。
二、根本训练
1. 数列中, ,那么 。
2. 等差数列中,,公差不为零,且恰为某等比数列的前3项,那么该等比数列的公比等于 。
3. 是等差数列的前n项和,,假设,那么m = 。
4. 设是等比数列,是等差数列,且,数列的前三项依次是,且,那么数列的前10项和为 。
5. 如果函数满足:对于任意的实数,都有,且,那么
。
三、例题分析
例1设无穷等差数列的前n项和为.
(1)假设首项,公差,求满足的正整数k;
(2)求所有的无穷等差数列,使得对于一切正整数k都有成立.
例2 如图,64个正数排成8行8列方阵.符号表示位于第i行第j列的正数.每一行的数成等差数列,每一列的数成等比数列,且各列数的公比都等于.假设,,,
(1)求的通项公式;
(2)记第行各项和为,求的值及数列
的通项公式;
(3)假设,求的值。
例3 函数对任意都有
(1)求和的值.
(2)数列满足:=,数列是等差数列吗?
(3)令,试比较与的大小.
例4. (05福建卷)数列{an}满足a1=a, an+1=1+我们知道当a取不同的值时,得到不同的数列,如当a=1时,得到无穷数列:
(Ⅰ)求当a为何值时a4=0;
(Ⅱ)设数列{bn}满足b1=-1, bn+1=,求证a取数列{bn}中的任一个数,都可以得到一个有穷数列{an};
(Ⅲ)假设,求a的取值范围.
四、作业 g3.1028数列的综合应用
1. 等差数列的前n项和为,假设的值为常数,那么以下各数中也是常数的是( )
A. B. C. D.
2. 等差数列和等比数列各项都是正数,且,那么,一定有( )
A. C.
1. (05广东卷)数列满足,,….假设,那么 x1等于 (B)
(A)(B)3(C)4(D)5
3. 等差数列所有项的和为210,其中前4项的和为40,后4项的和为80,那么项数为 。
4. 定义“等和数列〞:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。
数列是等和数列,且,公和为5,那么的值为______,这个数列的前n项
和的计算公式为 。
5. 三个实数排成一行,在6和3之间插入两个实数,3和之间插入一个实数,使得这六个数中的前三个、后三个分别成等差数列,且插入的三个数本身依次成等比数列,那么所插入的这三个数的和可能是:①;②3;③;④7。其中正确的序号是 。
6. 用数字0, 1, 2, 3, 5组成没有重复数字的五位偶数,把这些偶数从小到大排列起来,得到一个数列,那么 。
7. 等差数列的公差,数列是等比数列,又。
(1)求数列及的通项公式;
(2)设,求数列的前n项和(写成关于n的表达式)。
8. 设有数列,,假设以为系数的一元二次方程,且都有根满足。
(1)求证:数列是等比数列;
(2)求;
(3)求的前n项和。
9. 定义在R上的函数和数列满足以下条件:
,
其中为常数,为非零常数。
(1)令,证明数列是等比数列;
(2)求数列的通项公式。
答案:
根本训练
1、20 2、4 3、10 4、978 5、
例题分析:
例1、(1)4 (2)或或 例2、(1) (2) (3)6,7,8 例3、(1), (2)为等差数列 (3)当时,;当时,
例4.(I)解法一:
故a取数列{bn}中的任一个数,都可以得到一个有穷数列{an}
作业:
1、C 2、B 3、B 4、14 5、 6、, 7、32150 8、(1) (2) 9、(1)略 (2) (3)
10、(1)略 (2)