分享
2023年全国高中数学联赛试题及解析苏教版13.docx
下载文档

ID:844174

大小:37.85KB

页数:13页

格式:DOCX

时间:2023-04-15

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 全国 高中数学 联赛 试题 解析 苏教版 13
1993年全国高中数学联合竞赛试卷 第一试 一、选择题(每题5分,共30分) 1.假设M={(x,y)| |tanpy|+sin2px=0},N={(x,y)|x2+y2≤2},那么M∩N的元素个数是( ) (A)4 (B)5 (C)8 (D)9 2.f(x)=asinx+b+4(a,b为实数),且f(lglog310)=5,那么f(lglg3)的值是( ) (A)-5 (B)-3 (C)3 (D)随a,b取不同值而取不同值 3.集合A,B的并集A∪B={a1,a2,a3},当A¹B时,(A,B)与(B,A)视为不同的对,那么这样的(A,B)对的个数是( ) (A)8 (B)9 (C)26 (D)27 4.假设直线x=被曲线C:(x-arcsina)(x-arccosa)+(y-arcsina)(y+arccosa)=0所截的弦长为d,当a变化时d的最小值是( ) (A) (B) (C) (D)p 5.在△ABC中,角A,B,C的对边长分别为a,b,c,假设c-a等于AC边上的高h,那么sin+cos的值是( ) (A)1 (B) (C) (D)-1 6.设m,n为非零实数,i为虚数单位,zÎC,那么方程|z+ni|+|z-mi|=n与|z+ni|-|z-mi|=-m在同一复平面内的图形(F1,F2为焦点)是( ) 二、填空题(每题5分,共30分) 1.二次方程(1-i)x2+(l+i)x+(1+il)=0(i为虚数单位,lÎR)有两个虚根的充分必要条件是l的取值范围为________. 2.实数x,y满足4x2-5xy+4y2=5,设 S=x2+y2,那么+=_______. 3.假设zÎC,arg(z2-4)= ,arg(z2+4)= ,那么z的值是________. 4.整数的末两位数是_______. 5.设任意实数x0>x1>x2>x3>0,要使log1993+log1993+log1993≥k·log1993恒成立,那么k的最大值是_______. 6.三位数(100,101,L,999)共900个,在卡片上打印这些三位数,每张卡片上打印一个三位数,有的卡片所印的,倒过来看仍为三位数,如198倒过来看是861;有的卡片那么不然,如531倒过来看是 ,因此,有些卡片可以一卡二用,于是至多可以少打印_____张卡片. 三、(此题总分值20分) 三棱锥S-ABC中,侧棱SA、SB、SC两两互相垂直,M为三角形ABC的重心,D为AB的中点,作与SC平行的直线DP.证明:(1)DP与SM相交;(2)设DP与SM的交点为D¢,那么D¢为三棱锥S-ABC的外接球球心. 四、(此题总分值20分) 设0<a<b,过两定点A(a,0)和B(b,0)分别引直线l和m,使与抛物线y2=x有四个不同的交点,当这四点共圆时,求这种直线l与m的交点P的轨迹. 五、(此题总分值20分) 设正数列a0,a1,a2,…,an,…满足 -=2an-1,(n≥2) 且a0=a1=1,求{an}的通项公式. 第二试 一、(35分) 设一凸四边形ABCD,它的内角中仅有ÐD是钝角,用一些直线段将该凸四边形分割成n个钝角三角形,但除去A、B、C、D外,在该四边形的周界上,不含分割出的钝角三角形顶点.试证n应满足的充分必要条件是n≥4. 二、(35分) 设A是一个有n个元素的集合,A的m个子集A1,A2,L,Am两两互不包含. 试证:(1) ≤1; (2) C≥m2.其中|Ai|表示Ai所含元素的个数,C表示n个不同元素取|Ai|个的组合数. 三、(35分) 水平直线m通过圆O的中心,直线l^m,l与m相交于M,点M在圆心的右侧,直线l上不同的三点A,B,C在圆外,且位于直线m上方,A点离M点最远,C点离M点最近,AP,BQ,CR为圆 O的三条切线,P,Q,R为切点.试证:(1)l与圆O相切时,AB´CR+BC´AP=AC´BQ;(2)l与圆O相交时,AB´CR+BC´AP<AC´BQ;(3)l与圆O相离时,AB´CR+BC´AP>AC´BQ. 1993年全国高中数学联合竞赛解答 第一试 一、选择题(每题5分,共30分) 1.假设M={(x,y)| |tanpy|+sin2px=0},N={(x,y)|x2+y2≤2},那么M∩N的元素个数是( ) (A)4 (B)5 (C)8 (D)9 解:tanpy=0,y=k(k∈Z),sin2px=0,x=m(m∈Z),即圆x2+y2=2及圆内的整点数.共9个.选D. 2.f(x)=asinx+b+4(a,b为实数),且f(lglog310)=5,那么f(lglg3)的值是( ) (A)-5 (B)-3 (C)3 (D)随a,b取不同值而取不同值 解:设lglog310=m,那么lglg3=-lglog310=-m,那么f(m)=asinm+b+4=5,即asinm+b=1. ∴ f(-m)=-(asinm+b)+4=-1+4=3.选C. 3.集合A,B的并集A∪B={a1,a2,a3},当A¹B时,(A,B)与(B,A)视为不同的对,那么这样的(A,B)对的个数是( ) (A)8 (B)9 (C)26 (D)27 解:a1∈A或ÏA,有2种可能,同样a1∈B或ÏB,有2种可能,但a1ÏA与a1ÏB不能同时成立,故有22-1种安排方式,同样a2、a3也各有22-1种安排方式,故共有(22-1)3种安排方式.选D. 4.假设直线x=被曲线C:(x-arcsina)(x-arccosa)+(y-arcsina)(y+arccosa)=0所截的弦长为d,当a变化时d的最小值是( ) (A) (B) (C) (D)p 解:曲线C表示以(arcsina,arcsina),(arccosa,-arccosa)为直径端点的圆.即以(α,α)及(-α,-+α)(α∈[-,])为直径端点的圆.而x=与圆交于圆的直径.故d=≥. 应选C. 5.在△ABC中,角A,B,C的对边长分别为a,b,c,假设c-a等于AC边上的高h,那么sin+cos的值是( ) (A)1 (B) (C) (D)-1 解:2R(sinC-sinA)=csinA=2RsinCsinA,ÞsinC-sinA=sinCsinA, Þ2cossin=-[cos(C+A)-cos(C-A)]= [1-2sin2-2cos2+1]. Þ(sin+cos)2=1,但sin+cos>0,应选A. 6.设m,n为非零实数,i为虚数单位,zÎC,那么方程|z+ni|+|z-mi|=n与|z+ni|-|z-mi|-m在同一复平面内的图形(F1,F2为焦点)是( ) 解:方程①为椭圆,②为双曲线的一支.二者的焦点均为(-ni,mi),由①n>0,故否认A, 由于n为椭圆的长轴,而C中两个焦点与原点距离(分别表示|n|、|m|)均小于椭圆长轴,故否认C. 由B与D知,椭圆的两个个焦点都在y轴负半轴上,由n为长轴,知|OF1|=n,于是m<0,|OF2|=-m.曲线上一点到-ni距离大,否认D,应选B. 二、填空题(每题5分,共30分) 1.二次方程(1-i)x2+(l+i)x+(1+il)=0(i为虚数单位,lÎR)有两个虚根的充分必要条件是l的取值范围为________. 解:即此方程没有实根的条件.当λ∈R时,此方程有两个复数根,假设其有实根,那么 x2+λx+1=0,且x2-x-λ=0.相减得(λ+1)(x+1)=0. 当λ=-1时,此二方程相同,且有两个虚根.故λ=-1在取值范围内. 当λ≠-1时,x=-1,代入得λ=2.即λ=2时,原方程有实根x=-1.故所求范围是λ≠2. 2.实数x,y满足4x2-5xy+4y2=5,设 S=x2+y2,那么+=_______. 解:令x=rcosθ,y=rsinθ,那么S=r2得r2(4-5sinθcosθ)=5.S=. ∴+=+=. 3.假设zÎC,arg(z2-4)= ,arg(z2+4)= ,那么z的值是________. 解:如图,可知z2表示复数4(cos120°+isin120°). ∴ z=±2(cos60°+isin60°)=±(1+i). 4.整数的末两位数是_______. 解:令x=1031,那么得==x2-3x+9-.由于0<<1,故所求末两位数字为09-1=08. 5.设任意实数x0>x1>x2>x3>0,要使log1993+log1993+log1993≥k·log1993恒成立,那么k的最大值是_______. 解:显然>1,从而log1993>0.即++≥. 就是[(lgx0-lgx1)+(lgx1-lgx2)+(lgx2-lgx3)]( ++)≥k. 其中lgx0-lgx1>0,lgx1-lgx2>0,lgx2-lgx3>0,由Cauchy不等式,知k≤9.即k的最大值为9. 6.三位数(100,101,L,999)共900个,在卡片上打印这些三位数,每张卡片上打印一个三位数,有的卡片所印的,倒过来看仍为三位数,如198倒过来看是861;有的卡片那么不然,如531倒过来看是 ,因此,有些卡片可以一卡二用,于是至多可以少打印_____张卡片. 解:首位与末位各可选择1,6,8,9,有4种选择,十位还可选0,有5种选择,共有4×5×4=80种选择. 但两端为1,8,中间为0,1,8时,或两端为9、6,中间为0,1,8时,倒后不变;共有2×3+2×3=12个,故共有(80-12)÷2=34个. 三、(此题总分值20分) 三棱锥S-ABC中,侧棱SA、SB、SC两两互相垂直,M为三角形ABC的重心,D为AB的中点,作与SC平行的直线DP.证明:(1)DP与SM相交;(2)设DP与SM的交点为,那么为三棱锥S—ABC的外接球球心. ⑴ 证明:∵ DP∥SC,故DP、CS共面. ∴ DCÍ面DPC, ∵ M∈DC,ÞM∈面DPC,SMÍ面DPC. ∵ 在面DPC内SM与SC相交,故直线SM与DP相交. ⑵ ∵ SA、SB、SC两两互相垂直,∴ SC⊥面SAB,SC⊥SD. ∵ DP∥SC,∴ DP⊥SD.△DD¢M∽△CSM, ∵ M为△ABC的重心,∴ DM∶MC=1∶2.∴ DD¢∶SC=1∶2. 取SC中点Q,连D¢Q.那么SQ=DD¢,Þ平面四边形DD¢QS是矩形. ∴ D¢Q⊥SC,由三线合一定理,知D¢C=PS. 同理,D¢A= D¢B= D¢B= D¢S.即以D¢为球心D¢S为半径作球D¢.那么A、B、C均在此球上.即D¢为三棱锥S—ABC的外接球球心. 四、(此题总分值20分) 设0<a<b,过两定点A(a,0)和B(b,0)分别引直线l和m,使与抛物线y2=x有四个不同的交点,当这四点共圆时,求这种直线l与m的交点P的轨迹. 解:设l:y=k1(x-a),m:y=k2(x-b).于是l、m可写为(k1x-y-k1a)(k2x-y-k2b)=0. ∴ 交点满足 假设四个交点共圆,那么此圆可写为(k1x-y-k1a)(k2x-y-k2b)+l(y2-

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开