分享
西南大学《线性代数》(英文版)课件-第6部分.pdf
下载文档

ID:75713

大小:1.14MB

页数:48页

格式:PDF

时间:2023-02-15

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
线性代数 西南 大学 英文 课件 部分
3.15|?)5HO?5“5|?)5eeeZZZ:?555|?/(m n)a11x1+a12x2+a1nxn=b1a21x1+a22x2+a2nxn=b2am1x1+am2x2+amnxn=bmw,5|?X?O2?Xea11a12a1na21a22a2n.am1am2amn,a11a12a1nb1a21a22a2nb2.am1am2amnbm5“g5|e5|?b1,bm?,=a11x1+a12x2+a1nxn=0a21x1+a22x2+a2nxn=0am1x1+am2x2+amnxn=0?5|ggg555|.w,g5|k)().ug5|,I?oek)=.5“1!J?K z5|k)?XJN)?k=Aa?O,uN?5|,N?)?).()?,)m?XNo?!,)cK.1n3e?).5“Gauss?)5|fff)5|x1 3x2 2x3=32x1+x2 4x3=9x1+4x2 x3=7e?5)?5|11?2?1?O?12,3?x1:x1 3x2 2x3=35x2 8x3=3x2 3x3=4 r2+2r1,r3+r11323058301345“?x2,;$,?1213?:x13x22x3=3x23x3=45x28x3=3r2r313230134058312?5?13?x2:x13x22x3=3x23x3=423x3=23r3+5r21323013400232313123:x13x22x3=3x23x3=4x3=1 123r31323013400115“L“?:x1=2x2=1x3=1100201010011?5|?)x1=2,x2=1,x3=1.ef)5|?:x1 3x2 2x3=3x2 3x3=423x3=23 r3+5r213230134002323?|?F/|.5“8Bo(enC5)5|:r?,?;p?;?,.)LA?5|?O2?,?uO2?n?1C:r1?,1?;p1?;?,1.?555|LLLnnnzzz?FFF/|,?LLL?111CCCzzz111?FFF/?.5“1?F?1?F/?A:y?F,?e?(XJk?);z?k1,?=1?1,?F?1?,=1?1?.?:1?F?z11?,?IX1IO?O.5“|?g)5|2x1 x2 x3+x4=2x1+x2 2x3+x4=44x1 6x2+2x3 2x4=43x1+6x2 9x3+7x4=9.21112112144622436979r1r2 r31211214211122311236979r2r3 r32r1,r43r111214022200553603343r212 112140111005536033435“11214011100553603343r3+5r2 r43r211214011100002600013r3r4 r32r411214011100001300000r1r2 r2r3,r1r310104011030001300000ux1=x3+4x2=x3+3x4=3 L|?).?X?CCC,gggddd.)kgd?f5LC.5“)5|x1 x2+x3=1x1 x2 x3=32x1 2x2 x3=3.111111132213r32r1 r2r1111100220031r212 111100110031r3+3r2 111100110002?F?A?5|x1 x2+x3=1x3=10=2?|).5“o(c?n5|?A?1?F/?Xe:x1 3x2 2x3=3x2 3x3=423x3=2313230134002323 )x1 x3=4x2 x3=3x4=310104011030001300000)x1 x2+x3=1x3=10=2111100110002 )nf,e?:5“r5|?O2?L?1Cz?F/?:XJA?F/|y“0=d(d 6=0),?.K?|).XJy“0=d(d 6=0),?.K?|k).*?ck)?f,1f?F?1?8 3,3.1?f?F?1?8 3,?4.dd,35|k)?cJe,XJ1?8?u,K?|k).XJ1?8?u?,K?|k).5“5|k)?Onn?5|?)kn:(1);(2);(3).5|z?F/|?:y“0=d(d 6=0),?|).y“0=d(d 6=0),?F/?1 r=n,K?|k).y“0=d(d 6=0),?F/?1 r n,K?|k).5“?5?O?OgJ?1?F/?111,d?=?:S?1?F/?.N/e:e5|?X?A,O2?A.r5|z?F/|?,A?X?O2?C?A?1?F/?F F.du?CUC?,u rA=rF,rA=rF.y“0=d(d 6=0),1?F/?F F?1?.=rF6=rF.S rF=rF+1.y“0=d(d 6=0),1?F/?F F?1?,=rF=rF.5“?5?Ouk?Onr5|z?F/|?:e rF6=rF,K?|).e rF=rF=n,K?|k).e rF=rF n,K?|k).|?&E=A A 5x,=?n?5|?X?O2?O A A:e rA6=rA,K?|).e rA=rA=n,K?|k).e rA=rA n,K?|k).5“e65L)5|?NL:5“g5|?/?ggg555|dug5|?,w,X?O2?o?,l?g5|k)(7k).u)?kXe(:g5|k)?r(A)n.?k eg5|?u?,Kg5|k).n n?5|k)?X?1?u.5“?Vg|?d3.2|HO?5“NSN1?Vg2|?d?Vg|?d?mmm:-a1,a2,a3 R,mL 2?kS|(a1,a2)a1a2!2?3?kS|(a1,a2,a3)a1a2a3 3?222(:R?P?:2 3?n?2?P?n?:5“?Vg|?dn?P?,P?n?kS|(a1,a2,an)a1a2.an(=(a1,a2,an)T)P?n?.aiT?1 i.?O,c1,?.PPP:?F1i1L n?,X,?.P k?n?8P Pn.X R29m R3.z 0?.5“?Vg|?dPn?$Pn?$:e =(a1,an),=(b1,bn),k P,:+=(a1+b1,an+bn);:k=(ka1,kan).uve 8:(+)+=+(+);+=+;+0=;+()=0;1=;(+)=+;(+)=+;()=().5“?Vg|?dm(5m)Pn?9 8$K?“X P?n?m(5m).X:R2 2?mm R3 3?m5“?Vg|?d?|u?A=a11a12a1na21a22a2n.am1am2amn Pmn,g,/:A?z1 n?,r1 i (ai1,ai2,ain)Pi,K1,2,m A?1|.A?z?m?,r1 j a1ja2j.amjP j,K1,2,n A?|.5“?Vg|?dL5,e m n?1 1,2,m m n?A.e n m?1,2,n m n?A.l?A?1|?|;1|?|A?;5“?Vg|?d5|a11x1+a12x2+a1nxn=b1a21x1+a22x2+a2nxn=b2am1x1+am2x2+amnxn=bmx1a11a21.am1+x2a12a22.am2+xna1na2n.amn=b1b2.bmq1q2qnqx11+x22+xnn=5“?Vg|?dl?5|L:x11+x22+xnn=/555|?/.w,1,2,n5|?X?A=a11a12a1na21a22a2nam1am2amn?|,d|?.?x11+xnn=,5“?Vg|?d5|5L|1,2,s9 k1,k2,ks P,k11+k22+kss|1,2,s?5|.k1,k2,ks|X.?Pn,e3 c1,c2,cs P,?=c11+c22+css,K d|1,2,s5L.5“?Vg|?d#Vg5|:5|x11+x22+xnn=k)m|c1,c2,cn P s.t.c11+c22+cnn=m d 1,2,n5L(:|k)?UdX?|5L5“?Vg|?d555|/?(VVV):J?5|k)?#?-lA?w5|;|5|Ud 1,2,nL,S5|x11+x22+xnn=k)=.5“?Vg|?df?1=111,2=110,3=100,=345.y d|1,2,35L.yyydu=51 2 3.d|1,2,35L.ed|L?O:5“?Vg|?dd|L?O d 1,2,n5Lm5|x11+x22+xnn=k)m5|?X?uO2?mr(1,2,n)=r(1,2,n,)m?d 1,2,n9 1,2,n,?5“?Vg|?df?1=1122,2=1213,3=1140,=1031.y d|1,2,35L,L.)?(1,2,3,)?1?1C(1,2,3,)=1111121021432301r2r1 r32r1,r42r11111012101210121r3+r2,r4r2 r1r210320121000000005“?Vg|?dfu r(1,2,3)=r(1,2,3,).?d 1,2,35L.5|x11+x22+x33=(1.1)5L?|X.d?(1,2,3,)?1C?(J,?5|(1.1)?|(x1=3x3+2x2=2x3 1?)=,X-x3=0,?)x1=2,x2=1,x3=0.uk=21 2+03=21 2+03.555L?:X-x3=1.5“?Vg|?d5fm d 1,2,s5Lm U?1,2,s?5|ggg:1,2,sk?5|,2?.1,2,sk?5|?8:W=k11+k22+kss|k1,k2,ks P W v:=k11+kss,=11+ss W,+=(k1+1)1+(ks+s)s W;P,=(k1)1+(ks)s W.W u4.5“?Vg|?d5fm?6=U Pn,e U v(1),U=+U;(2)U,P=U,K U Pn?5fm,fm.0 Pn:fm.U=(a,b,0)|a,b R R3?fm.W fm,d 1,sk5|?,d 1,s)?fm,Ph1,si?yyy888fffmmm:n:(1);(2)4;(3)4.5“NSN1?Vg2|?d?Vg|?d|?d?!,?Ud 1,s5L?K.!?X?|m?LK.?1,s(2.1)1,t(2.2)Pn?|.e|(2.1)?zd(2.2)L,K|(2.1)d|(2.2)L.e(2.1)(2.2)UpL,K(2.1)(2.2)?d,P1,s 1,t.555|?d?dX:ggg,DDD444.5“?Vg|?df?1=111,2=110,3=100,4=123,1=100,2=010,3=001.y|1,2,3,4|1,2,3?d.yyy1=1+2+3,2=1+2,3=1,4=1+22+33 1,2,3,4d 1,2,3L.q1=32=2 3,3=1 2,u 1,2,3d 1,2,3,4L.?1,2,3,4|1,2,3?d.5“?Vg|?d?|?d/e,|?|1,s 1,t?d:?g?id 1,tL,i=1,s;g?jd 1,sL,j=1,t.n s+t 5|)?.O?.?5?Ud|L:d 1,sL r(1,s)=r(1,s,).u|5?|m?pL,?|?d.5“?Vg|?d?|?d?y 1,s 1,t:,I?y 1,td 1,sLr(1,s)=r(1,s,1,t);1,sd 1,tLr(1,t)=r(1,t,1,s).n5 1,s 1,tr(1,s)=r(1,s,1,t)qr(1,t)=r(1,t,1,s)5“?Vg|?d?|?dn1,s 1,tr(1,s)=r(1,s,1,t)=r(1,t)yyy ky75.d 1,s 1,t 1,td1,sL.AO/,1d 1,sL,ur(1,s)=r(1,s,1);q 2d 1,sL,?,2d 1,s,1L,ur(1,s,1)=r(1,s,1,2);-EL,B?r(1,s)=r(1,s,1,t)5“?Vg|?d?|?d2d 1,s 1,t 1,sd 1,tL.nyr(1,t)=r(1,t,1,s).?A=(1,s,1,t)B=(1,t,1,s),A L?CC B,?CUC?,l?r(1,s,1,t)=r(1,t,1,s).n?r(1,s)=r(1,s,1,t)=r(1,t)5“?Vg|?d?|

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开