分享
西南大学《线性代数》(英文版)课件-第1部分.pdf
下载文档

ID:75712

大小:1.36MB

页数:37页

格式:PDF

时间:2023-02-15

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
线性代数 西南 大学 英文 课件 部分
m?1.0:?HO?5“m?S?:?:?K:)AK?f)K+3?:?i1L.uSK?i15L.2SKm?p?X?A?X:(?()?-:?2|$5),)K.)?;“?%K.5“m?:?gax=b(a 6=0).):ax=b a1a1ax=a1bx=a1b.?)?Ka.k.?e5lg,/?2.5“m?2/?n ggg:?ggg?O pppggg3,4g,k 5g,Galois=+,?=C-“n s 5|n 555|)?5m5C555“5“m?5|555|?/:n s a11x1+a12x2+a1nxn=b1a21x1+a22x2+a2nxn=b2as1x1+as2x2+asnxn=bs SSS.:3?,3?m.aij:1 i 1 j?X.:s=n;s n.|?):n?|(c1,c2,cn)?zC?.5“m?u5|?Ag,?K?k)?k?kk?O?ek)?ek),X)?ek),)m?Xo?t?AK,?5|?n.5“m?*N?ClA*ae:ax+by=c L?.d|?)eZ?:.uU?)?:;k;k.nC:ax+by+cz=d Lm?.d|?)meZ?:.uU?)?:;k;k.?,uy,5|?)kn.5“m?SNln?5|)?9?SN?%SN.kl?/u:s=n 1?(1)/:?n?(1?1n)l5|L?5m9?5C;?A?g.5“m?It is a cliche,but true nevertheless,that Mathematics canbe learned only by doing it,and not just by reading about it.While it is generally true that in order to learn Mathematicsone must do Mathematics,the serious student shouldattempt to solve a large number of problems.o1:1 30%,70%.5“m?eZP(Field)kvk)?k.X x+2=1(N,Z)2x=1(Z,Q)F?8,()U/?1,=T8?,()?(JE,38p.rVg(5:?P E8 C?f8.e P v 0,1 P;a,b P,a b,ab P?b 6=0,ab P.K P.5“m?eZP?O?k?O;u8,I?yv?=.Q,R,C;Z.?Q,R,C?,k?:Q(2)=a+b2|a,b Q,Q(i)=a+bi|a,b Q?y8.5“m?eZP5K?Q,?C.?e5?53,A?.5“m?eZP?P,/Xanxn+an1xn1+a1x+a0 P u x?,n N,an,an1,a1,a0 P.?f(x),g(x)L;e f(x)=anxn+an1xn1+a1x+a0 an6=0,K n f(x)?g.d f(x)n g.Px:L P k?8.Pnx L P kgL n?8.5“m?eZP?:?f(x)P,c P.e f(c)=0,K c f(x)?.-:e3 g(x)?f(x)=(x c)kg(x)g(c)6=0,K c f(x)?k-.“?nnn:nE C?n gk n(-U-O).5“m?eZPPnXi=1ai=a1+a2+an.nXj=1mXi=1aij=a11+a12+a1n+am1+amn=a11+a21+am1+a1n+amn=mXi=1nXj=1aij;?m=n,PnXi,j=1aij.5“m?eZPPmXj=1nXi=1aibi=nXi=1mXj=1aibj=(a1+a2+an)(b1+b2+bm);nYi=1ai=a1a2an.5“1?1.1:?n?1?HO?5“1?1?n?1?5|?,?5|?m?Xens=n;s n;s n.G?s=n,=?u?.?Ln?/.J?u?5|;.?f,L?)K?(a.k?u?5|?/:1 1 (?,vkd)2 2(?1)5“1?1?n?1?l?5|u(a11x1+a12x2=b1 (1)a21x1+a22x2=b2 (2)|:?x2:a22(1),a12(2)?(a11a22x1+a12a22x2=b1a22 (3)a12a21x1+a12a22x2=a12b2 (4)2?a11a22x1 a12a21x1=b1a22 a12b2?a11a22 a12a21=0,?|)k).?a11a22 a12a216=0,)?x1=b1a22 a12b2a11a22 a12a21;aq?x2=a11b2 b1a21a11a22 a12a215“1?1?n?1?o(?|(a11x1+a12x2=b1a21x1+a22x2=b2d?X(.?|k)?a11a22 a12a216=0.d)dex1=b1a22 a12b2a11a22 a12a21;x2=a11b2 b1a21a11a22 a12a21.K:BP.5“1?1?n?1?*?x1=b1a22 a12b2a11a22 a12a21;x2=a11b2 b1a21a11a22 a12a21.x1 x2?/;x1 x2?1;x1 x2?f1?/.PPPLLL:BuPL a11a22 a12a21,P?a11a12a21a22?.?111?:o1?La11a12a21a22 aij:i 1I,j?I.L a11a22 a12a21TL?111?.=?a11a12a21a22?=a11a22 a12a21.5“1?1?n?1?u?1?5)1683 cF?f?J.X?nuVandemonde(?).1?(Determinant),?i1 D det L1?:D=?a11a12a21a22?=a11a22 a12a21.51?A?P,LLLL.?1?K:?1?u?B?.5“1?1?n?1?1?L)1?PL x1=b1a22 a12b2a11a22 a12a21;x2=a11b2 b1a21a11a22 a12a21,?(a11x1+a12x2=b1a21x1+a22x2=b2?)x1=?b1a12b2a22?a11a12a21a22?,x2=?a11b1a21b2?a11a12a21a22?555:?XL?1?6=0,|k),)v)?1XL?1?.x1?fXL?1?O?AL?1?;x2?fXL?1?O?AL?1?.D LXL?1?,DiLXL1 i?O?AL?1?,Kxi=DiD,i=1,2.5“1?1?n?1?fzz,n?,?n?u i1?c1;i2m?u i2?c2;g?in1m?u in1?cn1;(i1i2in)=c1+c2+cn1.5“_SO(2341);(32514);(n(n 1)321);(36715284).(2341)=1+1+1=3;(32514)=2+1+2=5;(n(n 1)321)=(n 1)+(n 2)+2+1=n(n1)2;(36715248)=2+4+4+0+2+0+0=12.5“?5L?fuy?_S._S()?()?.(2341)=3?.(2143)=2?.*?2341 2143 m?X:1,3?iC.?i,j?C,?Cg.P(i,j).X 2341(1,3)2143.=?2341 Lg(1,3)C?2143.5“5nUC n?5.yyyy.(1)y?UC?5.?i j ()(i,j)j i ()?()(),Q i j?3?_;i j?3?_;d i,j|?:ij 3()/SK ji 3()/_S;ij 3()/_SK ji 3()/S.l?()=()1.=?UC?5.5“(2)y?UC?5.?ik1k2ksj ()(i,j)jk1k2ksi ()5?Le?y(i,k1),(i,k2),(i,ks),(i,j),(ks,j),(k2,j),(k1,j).?u?2s+1 g?.q?UC?5,UC?5.n?,n!2.5“

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开