温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
概率论与数理统计
华东师范大学
概率论
数理统计
课件
第二
茆诗松版
华东师范大学统计系茆诗松、程依明、濮晓龙 研制?(1)掷一颗骰子,出现的点数 X1,2,6.(2)n个产品中的不合格品个数 Y 0,1,2,n (3)某商场一天内来的顾客数 Z 0,1,2,(4)某种型号电视机的寿命 T:0,+)定义2.1.1 设 =为某随机现象的样本空间,称定义在上的实值函数X=X()为随机变量.(1)随机变量X()是样本点的函数,其定义域为,其值域为R=(,)若 X 表示掷一颗骰子出现的点数,则 X=1.5 是不可能事件.(2)若 X 为随机变量,则 X=k、a X b、均为随机事件.即 a X b=;a X()b (3)注意以下一些表达式:X=k=X kX k;a b=X b.(4)同一样本空间可以定义不同的随机变量.若随机变量 X 可能取值的个数为有限个或 可列个,则称 X 为离散随机变量.若随机变量 X 的可能取值充满某个区间 a,b,则称 X 为连续随机变量.前例中的 X,Y,Z 为离散随机变量;而 T 为连续随机变量.定义2.1.2 设X为一个随机变量,对任意实数 x,称 F(x)=P(X x)为 X 的分布函数.基本性质:(1)F(x)单调不降;(2)有界:0F(x)1,F()=0,F(+)=1;(3)右连续.设离散随机变量 X 的可能取值为:x1,x2,xn,称 pi=P(X=xi),i=1,2,为 X 的分布列.分布列也可用表格形式表示:X x1 x2 xn P p1 p2 pn (1)pi 0,(2)1.iip(正则性)(非负性)求离散随机变量的分布列应注意:(1)确定随机变量的所有可能取值;(2)计算每个取值点的概率.对离散随机变量的分布函数应注意:(1)F(x)是递增的阶梯函数;(2)其间断点均为右连续的;(3)其间断点即为X的可能取值点;(4)其间断点的跳跃高度是对应的概率值.例2.1.1已知 X 的分布列如下:X 0 1 2P 1/3 1/6 1/2求 X 的分布函数.0,01/3,01()1/2,121,2 xxF xxx解:X 0 1 2P 0.4 0.4 0.2解:0,00.4,01()0.8,121,2xxF xxx 例2.1.2已知 X 的分布函数如下,求 X 的分布列.连续随机变量X的可能取值充满某个区间(a,b).因为对连续随机变量X,有P(X=x)=0,所以无法仿离散随机变量用 P(X=x)来描述连续随机变量X的分布.注意离散随机变量与连续随机变量的差别.定义2.1.4设随机变量X 的分布函数为F(x),则称 X 为连续随机变量,()()xp t dtF x若存在非负可积函数 p(x),满足:称 p(x)为概率密度函数,简称密度函数.密度函数的基本性质(2)(1)()0;()1.p xp x dx满足(1)(2)的函数都可以看成某个连续随机变量的概率密度函数.(非负性)(正则性).()()baP aXbp x dx注意点(1)(1)(2)F(x)是(,+)上的连续函数;(3)P(X=x)=F(x)F(x0)=0;(4)PaXb=PaXb =PaXb =PaXb =F(b)F(a).注意点(2)(5)当F(x)在x点可导时,p(x)=()F x当F(x)在x点不可导时,可令p(x)=0.连续型1.密度函数 X p(x)(不唯一)()()xF xp t dt2.4.P(X=a)=0离散型1.分布列:pn=P(X=xn)(唯一)2.F(x)=()iixxP Xx 3.F(a+0)=F(a);P(a a 和 B=Y a 独立,解:因为 P(A)=P(B),P(AB)=P(A)+P(B)P(A)P(B)2238ax dx318a 从中解得34a且 P(AB)=3/4,求常数 a.且由A、B 独立,得=2P(A)P(A)2=3/4从中解得:P(A)=1/2,由此得 0a a)例2.1.5 设 X p(x),且 p(x)=p(x),F(x)是 X 的分布函数,则对任意实数 a0,有()F(a)=1 F(a)=F(a)=F(a)F(a)=2F(a)10()ap x dx01()2ap x dx 分赌本问题(17世纪)甲乙两赌徒赌技相同,各出赌注50元.无平局,谁先赢3局,则获全部赌注.当甲赢2局、乙赢1局时,中止了赌博.问如何分赌本?1.按已赌局数分:则甲分总赌本的2/3、乙分总赌本的1/3 2.按已赌局数和再赌下去的“期望”分:因为再赌两局必分胜负,共四种情况:甲甲、甲乙、乙甲、乙乙所以甲分总赌本的3/4、乙分总赌本的1/4 若按已赌局数和再赌下去的“期望”分,则甲的所得 X 是一个可能取值为0 或100 的随机变量,其分布列为:X 0 100P 1/4 3/4甲的“期望”所得是:01/4+100 3/4=75.定义2.2.1 设离散随机变量X的分布列为P(X=xn)=pn,n=1,2,.若级数绝对收敛,则称该级数为X 的1iiix p数学期望,记为1()iiiE Xx p 定义2.2.2 设连续随机变量X的密度函数为p(x),若积分绝对收敛,则称该积分为X 的()xp x dx数学期望,记为()()E Xxp x dx例2.2.1则E(X)=10.2+00.1+10.4+20.3=0.8.X 1 0 1 2P 0.2 0.1 0.4 0.3 数学期望简称为期望.数学期望又称为均值.数学期望是一种加权平均.定理2.2.1 设 Y=g(X)是随机变量X的函数,若 E(g(X)存在,则1()()()()()iiig x P XxE g Xg x p x dx例2.2.2 设随机变量 X 的概率分布为求 E(X2+2).=(02+2)1/2+(12+2)1/4+(22+2)1/4=1+3/4+6/4=13/4解:E(X2+2)X 0 1 2P 1/2 1/4 1/4数学期望的性质(1)E(c)=c(2)E(aX)=aE(X)(3)E(g1(X)+g2(X)=E(g1(X)+E(g2(X)例2.2.32,01()0,xxp x其 它设 X 求下列 X 的函数的数学期望.(1)2X1,(2)(X 2)2解:(1)E(2X 1)=1/3,(2)E(X 2)2=11/6.数学期望反映了X 取值的中心.方差反映了X 取值的离散程度.定义2.3.1 若 E(XE(X)2 存在,则称 E(XE(X)2 为 X 的方差,记为Var(X)=D(X)=E(XE(X)2(2)称X=(X)=Var()X(1)方差反映了随机变量相对其均值的偏离程度.方差越大,则随机变量的取值越分散.为X 的标准差.标准差的量纲与随机变量的量纲相同.(1)Var(c)=0.性质 2.3.2(2)Var(aX+b)=a2 Var(X).性质 2.3.3(3)Var(X)=E(X2)E(X)2.性质 2.3.1例2.3.1 设 X 01()2120 xxp xxx其 它,求 E(X),Var(X).解:(1)E(X)=3231211()0133xxx=1(2)E(X2)=7/6所以,Var(X)=E(X2)E(X)2=7/6 1=1/6()dxp xx1201d(2)dx x xxxx2()dx p xx123201d(2)dxxxxx