温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
聚氨酯
市场
研究
报告
聚氨酯市场研究报告
聚氨酯是一种新兴的有机高分子材料,被誉为“第五大塑料〞,因其卓越的性能而被广泛应用于国民经济众多领域。产品应用领域涉及轻工、化工、电子、纺织、医疗、建筑、建材、汽车、国防、航天、航空等。下面是小编整理的聚氨酯市场研究报告,欢迎来参考!
聚氨酯是指分子结构中含有许多重复的氨基甲酸酯基团的一类聚合物,全称为聚氨基甲酸酯,简称PU。聚氨酯根据其组成的不同,可制成线型分子的热塑性聚氨酯,也可制成体型分子的热固性聚氨酯。前者主要用于弹性体、涂料、胶黏剂、合成革等,后者主要用于制造各种软质、半硬质、硬质泡沫塑料。
聚氨酯于1937年由德国科学家首先研制成功,于1939年开始工业化生产。其制造方法是异氰酸酯和含活泼氢的化合物(如醇、胺、羧酸、水分等)反响,生成具有氨基甲酸酯基团的化合物。其中以异氰酸酯与多元醇反响为制造PU的根本反响,其反响式为:
反响属于逐步加成聚合,反响过程中没有小分子副产物生成。如异氰酸酯或多元醇之一有三个以上的官能团,那么生成立体的网状结构。
一、 合成聚氨酯的根本原料
合成聚氨酯的根本原料为异氰酸酯、多元醇、催化剂以及扩链剂等。
(1)异氰酸酯 异氰酸酯一般含有两个或两个以上的异氰酸酯基,异氰酸酯基团很活泼,可以跟醇、胺、羧酸、水等发生反响。目前聚氨酯产品中主要使用的异氰酸酯为甲苯二异氰酸酯(TDI)、二本基甲烷二异氰酸酯(MDI)和多亚甲基对苯多异氰酸酯(PAPI)。TDI主要用于软质泡沫塑料;MDI可用于半硬质、硬质泡沫塑料机胶黏剂等;PAPI由于含有三个官能度,可用于热固性的硬质泡沫塑料、混炼以及浇注制品。
(2)多元醇 多元醇构成聚氨酯结构中的弹性局部,常用的有聚醚多元醇和聚酯多元醇。多元醇在聚氨酯中的含量决定聚氨酯树脂的软硬程度、柔顺性和刚性。聚醚多元醇为多元醇、多元胺或其他含有活泼氢的有机化合物与氧化烯烃开环聚合而成,具有弹性大、粘度低等优点。这类多元醇用的比较多,特别是应用于软质泡沫塑料和反响注射成型产品中。聚酯多元醇是以各种有机多元酸和多
元醇通过酯化反响而得到的。二元酸和二元醇合成的线型聚酯多元醇主要用于软质聚氨酯,二元酸与三元醇合成的支链型聚酯多元醇主要用于硬质聚氨酯。
(3)催化剂 在聚氨酯聚合过程中还需要参加催化剂,以加速聚合过程,一般有胺类和锡类两种,常用的胺类有三乙烯二胺、N—氨基啉等,锡类有二月桂酸二丁基锡、辛酸亚锡等
(4)扩链剂常用的扩链剂是低相对分子质量的二元醇和二元胺,它们与异氰酸酯反响生成聚合物中的硬段。常用的扩链剂有乙二醇、丙二醇、丁二醇、己二醇等。二元胺一般都采用芳香族二元胺,如二苯甲烷二胺、二氯二苯基甲烷二胺等。
二、 结构对性能的影响
任何高分子材料的性能均由其结构决定,聚氨酯结构包含化学结构和聚集结构两方面。化学结构即分子链结构,是合成之初配方设计中需要着重考虑的因素;聚集结构是指大分子链段的堆积状态,受分子链结构、合成工艺、使用条件等的影响。具体有以下几方面的影响:
(1)软段对性能的影响
聚醚、聚酯等低聚物多元醇组成软段。软段在聚氨酯中占大局部,不同的低聚物多元醇与二异氰酸酯制备的聚氨酯性能各不相同。
极性强的聚酯作软段得到的聚氨酯弹性体及泡沫的力学性能较好。因为,聚酯制成的聚氨酯含极性大的酯基,这种聚氨酯内部不仅硬段间能够形成氢键,而且软段上的极性基团也能局部地与硬段上的极性基团形成氢键,使硬相能更均匀地分布于软相中,起到弹性交联点的作用。在室温下某些聚酯可形成软段结晶,影响聚氨酯的性能。聚酯型聚氨酯的强度、耐油性、热氧化稳定性比PPG聚醚型的高,但耐水解性能比聚醚型的差。聚四氢呋喃(PTMEG)型聚氨酯,由于PTMEG规整结构,易形成结晶,强度与聚酯型的不相上下。一般来说,聚醚型聚氨酯,由于软段的醚基较易旋转,具有较好的柔顺性,优越的低温性能,并且聚醚中不存在相对易于水解的酯基,其耐水解性比聚醚型好。聚醚软段的醚键的α碳容易被氧化,形成过氧化物自由基,产生一系列的氧化降解反响。以聚丁二烯为软段的聚氨酯,软段极性弱,软硬段间相容性差,弹性体强度较差。含侧链的软段,由于位阻作用,氢键弱,结晶性差,强度比相同软段主链的无侧基聚氨酯差。
软段的分子量对聚氨酯的力学性能有影响,一般来说,假定聚氨酯分子量相同,其软段假设为聚酯,那么聚氨酯的强度随作聚酯二醇分子量的增加而提高;假设软段聚醚,那么聚氨酯的强度随聚醚二醇分子量的增加而下降,不过伸长率却上升。这是因为聚酯型软段本身极性就较强,分子量大那么结构规整性高,对改善强度有利,而聚醚软段那么极性较弱,假设分子量增大,那么聚氨酯中硬段的相对含量就减小,强度下降。
软段的结晶性对线性聚氨酯链段的结晶性有较大的奉献。一般来说,结晶性对提高聚氨酯制品的性能是有利的,但有时结晶会降低材料的低温柔韧性,并且结晶性聚合物常常不透明。为了防止结晶,可打乱分子的规整性,如采用共聚酯或共聚醚多元醇,或混合多元醇、混合扩链剂等。
(2)硬段对性能的影响
聚氨酯的硬段由反响后的异氰酸酯或多异氰酸酯与扩链剂组成,含有芳基、氨基甲酸酯基、取代脲基等强极性基团,通常芳香族异氰酸酯形成的刚性链段构象不易改变,常温下伸展成棒关状。硬链段通常影响聚合物的软化熔融温度及高温性能。
异氰酸酯的结构影响硬段的刚性,因而异氰酸酯的种类对聚氨酯材料的性能有很大影响。芳族异氰酸酯分子中刚性芳环的存在、以及生成的氨基甲酸酯键赋予聚氨酯较强的内聚力。对称二异氰酸酯使聚氨酯分子结构规整有序,促进聚合物的结晶,故4,4′—二苯基甲烷二异氰酸酯(MDI)比不对称的二异氰酸酯(如TDI)所制聚氨酯的内聚力大,模量和撕裂强度等物理机械性能高。芳香族异氰酸酯制备的聚氨酯由于硬段含刚性芳环,因而使其硬段内聚强度增大,材料强度一般比脂肪族异氰酸酯型聚氨酯的大,但抗紫外线降解性能较差,易泛黄。脂肪族聚氨酯那么不会泛黄。不同的异氰酸酯结构对聚氨酯的耐久性也有不同的影响,芳香族比脂肪族异氰酸酯的聚氨酯抗热氧化性能好,因为芳环上的氢较难被氧化。
扩链剂对聚氨酯性能也有影响。含芳环的二元醇与脂肪族二元醇扩链的聚氨酯相比有较好的强度。二元胺扩链剂能形成脲键,脲键的极性比氨酯键强,因而有二元胺扩链的聚氨酯比二元醇扩链的聚氨酯具有较高的机械强度、模量、粘附性、耐热性,并且还有较好的低温性能。浇注型聚氨酯弹性体多采用芳香族二胺MOCA作扩链剂,除固化工艺因素外,就是因为弹性体具有良好的综合性能。
聚氨酯的软段在高温下短时间不会很快被氧化和发生降解,但硬段的耐热性影响聚氨酯的耐温性能,硬段中可能出现由异氰酸酯反响形成的几种键基团,其热稳定性顺序如下:
异氰脲酸酯>脲>氨基甲酸酯>缩二脲>脲基甲酸酯
其中最稳定的异氰酸酯在270℃左右才开始分解。氨酯键的热稳定性随着邻近氧原子碳原子上取代基的增加及异氰酸酯反响性的增加或立体位阻的增加而降低。并且氨酯键两侧的芳香族或脂肪族基团对氨酯键的热分解性也有影响,稳定性顺序如下:
R—NHCOOR>Ar—NHCOOR>R—NHCOOAr>Ar—NHCOOAr
提高聚氨酯中硬段的含量通常使硬度增加,弹性降低。
(3)聚氨酯的形态结构
聚氨酯的性能,归根结底受大分子链形态结构的影响。特别是聚氨酯弹性体材料,软段和硬段的相别离对聚氨酯的性能至关重要,聚氨酯的独特的柔韧性和宽范围的物性可用两相形态学来解释。聚氨酯材料的性能在很大程序上取决于软硬段的相结构及微相别离程度。适度的相别离有利于改善聚合物的性能。
从微观形态结构看,在聚氨酯中,强极性和刚性的氨基甲酸酯基等基团由于内聚能大,分子间可以形成氢键,聚集在一起形成硬段微相区,室温下这些微区呈玻璃态次晶或微晶;极性较弱的聚醚链段或聚酯等链段聚集在一起形成软段相区。软段和硬段虽然有一定的混容,但硬段相区与软段相区具有热力学不相容性质,导致产生微观相别离,并且软段微区及硬段微区表现出各自的玻璃化温度。软段相区主要影响材料的弹性及低温性能。硬段之间的链段吸引力远大于软段之间的链段吸引力,硬相不溶于软相中,而是分布其中,形成一种不连续的微相结构,常温下在软段中起物理交联点的作用,并起增强作用。故硬段对材料的力学性能,特别是拉伸强度、硬度和抗撕裂强度具有重要影响。这就是聚氨酯弹性体中即使没有化学交联,常温下也能显示高强度、高弹性的原因。聚氨酯弹性体中能否发生微相别离、微相别离的程度、硬相在软相中分布的均匀性都直接影响弹性体的力学性能。
(4)氢键
氢键存在于含电负性较强的氮原子、氧原子的基团和含H原子的基团之间,与基团内聚能大小有关,硬段的氨基甲酸酯或脲基的极性强,氢键多存在于硬段之间。据报道,聚氨酯中的多种基团的亚胺基(NH)大局部能形成氢键,而其中大局部是NH与硬段中的羰基形成的,小局部与软段中的醚氧基或酯羰基之间形成的。与分子内化学键的键合力相比,氢键是一种物理吸引力,极性链段的紧密排列促使氢键形成;在较高温度时,链段接受能量而活动,氢键消失。氢键起物理交联作用,它可使聚氨酯弹性体具有较高的强度、耐磨性。氢键越多,分子间作用力越强,材料的强度越高。
(5)交联度
分子内适度的交联可使聚氨酯材料硬度、软化温度和弹性模量增加,断裂伸长率、永久变形和在溶剂中的溶胀性降低。对于聚氨酯弹性体,适当交联,可制得机械强度优良、硬度高、富有弹性,且有优良耐磨、耐油、耐臭氧及耐热性等性能的材料。但假设交联过度,可使拉伸强度、伸长率等性能下降。
聚氨酯化学交联一般是由多元醇(偶尔多元胺或其它多官能度原料)原料或由高温、过量异氰酸酯而形成的交联键(脲基甲酸酯和缩二脲等)引起,交联密度取决于原料的用量。与氢键引起的物理交联相比,化学交联具有较好的热稳定性。
聚氨酯泡沫塑料是交联型聚合物,其中软制裁泡沫塑料由长链聚醚(或聚酯)二醇及三醇与二异氰酸酯及扩链交联剂制成,具有较好的弹性、柔软性;硬质泡沫塑料由高官能度、低分子量的聚醚多元醇与多异氰酸酯(PAPI)等制成,由于很高的交联度和较多刚性苯环的存在,材料较脆。有研究说明,随着脲基甲酸酯、缩二脲等基团的增加,软质聚氨酯泡沫塑料的耐疲劳性能下降。
三、 聚氨酯的几个实际应用
(1)鲨鱼皮泳衣
鲨鱼皮泳衣是人们根据其外形特征起的绰号,它的核心技术在于模仿鲨鱼的皮肤。生物学家发现,鲨鱼皮肤外表粗糙的V形皱褶可以大大减少水流的摩擦力,使身体周围的水流更高效地流过,鲨鱼得以快速游动。快皮的超伸展纤维外表便是完全仿造鲨鱼皮肤外表制成的。此外,这款泳衣还充分融合了仿生学原理:在接缝处模仿人类的肌腱,为运发动向后划水时提供动力;在布料上模仿人类的皮肤,富有弹性。实验说明,鲨鱼皮的纤维可以减少3% 水的阻力,这在1秒就能决定胜负的游泳比赛中有着非凡意义。根本原因:“鲨鱼皮〞使用了能增加浮力的聚氨酯纤维材料。