第1页共5页信用风险分析方法的开展[]对目前极具应用前景的信用风险分析方法进行了评述,分析了它们的特点、应用及进展,并在此根底上,提出了我国相应的决策,以便为促进我国信用风险管理水平的提高提供有益的借鉴。[关键词]信用风险神经网络专家系统杂合体系一、问题的提出银行面临的主要风险有信用风险、市场风险、利率风险。我国商业银行的改革一直在进行中。就我国实际情况而言,银行经营效益低下,呆账、坏账增加固然有体制上的原因,但无视信用风险分析和管理方法的研究,对信用资产进行不合理的定价也是一个不容无视的原因。近20年来,随着国际金融领域竞争的空前加剧及大规模贷款组合的不断开展,传统的信用评估方法已不能满足人们的需要。一批以信息技术为支撑,以系统采用统计科学、人工智能、模拟技术等为特征的现代信用风险分析方法在西方兴旺国家不断涌现。与国外相比,我国目前对风险分析方法的研究还不充分,信用风险方法仍以传统的比例分析为主,定性、静态、局部的分析多,定量、动态、全局的分析少。中国参加wto后,国内的金融机构面临来自同行的剧烈竞争,因此了解和借鉴先进的风险管理模型,建立科学的信用风险分析体系就成为目前的当务之急。二、信用风险分析方法的开展及其进展信用风险的分析是个世界性的问题。从20世纪60年代开始美国与欧洲许多国家的研究者们已经开始进行信用风险分析研究。亚洲金融风暴之后,全世界又兴起了打破旧的信用风险分析方法,重新建立一套新的信用风险分析方法的热潮。迄今为止,信用风险分析方法已经从统计学方法、专家系统法、神经网络方法到近年来研究很热的支持向量机方法。1.非参数统计方法从现有国内外文献看,常用的非参数方法主要有。k最近邻居判别,核密度估计和聚类分析。其主要思想是将与信用风险相关的一组因素表示为一个向量,即样本空间中的一个点,向第2页共5页量的每个元素即为某个财务指标,然后根据空间中的某个距离或规那么将其分类。k近邻判别法是一种非参数统计方法,它在一定距离概念下按照假设干变量从样本中选取与确定向量距离最短的k个样本为一组。聚类分析是根据借款人的指标计算出样本空间的距离将其分类。这种方法的一个主要优点是不要求总体服从某种具体的分布,可对变量采用名义尺度、次序尺度等。因此,该方法可用于定量研究,也可对现实中无法用数值精确表述的属性进行分析。这很适用于信用风险分析中按照定量指标和定性指标。对不服从一定分布特性的数据信息...