温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
年届
高考
二轮
复习
物理教案
电磁感应
doc
高中物理
专题六 电磁感应 教案
一. 专题要点
1.感应电流:⑴产生条件:闭合电路的磁通量发生变化。⑵方向判断:楞次定律和右手 ks5u 定那么。⑶“阻碍〞的表现:阻碍磁通量的变化(增反减同),阻碍物体间的相对运动(来斥去吸),阻碍原电流的变化(自感现象)。
2.感应电动势的产生:
⑴感生电场:英国物理学家麦克斯韦的电磁场理论认为,变化的磁场周围产 ks5u 生电场,这种电场叫感生电场。感生电场是产生感生电动势的原因。 ks5u
⑵动生电动势:由于导体的运动而产生的感应电动势为动生电动势。产生动生电动势的那局部导体相当于电源
3.感应电动势的分类、计算
ks5u
二. 考纲要求
考点
要求
考点解读
电磁感应现象
Ⅰ
本专题有对单一知识点的考查,也有对其它知识的综合考 ks5u 查考查的主要内容有楞次定律和法拉第电磁感应定律尤其是电磁感应与动力学、电路、能量守恒定律、图像相互结合的题目 ks5u
磁通量
Ⅰ
法拉第电磁感应定律
Ⅱ
楞次定律
Ⅱ
自感、涡流
Ⅰ
三. 教法指引
此专题复习时,可以先让学生完成相应的习题,在精心批阅之后以题目带动知 ks5u 识点,进行适当提炼讲解。这一专题的知识点较为综合,高考要求普遍较高,属于必考知识点 因为这局部的综合题较多,二轮复习时还是要稳扎稳打,从根本规律,根本解题步骤出发 ks5u 再进行提升。
四. 知识网络
ks5u
五. 典例精析
题型1.(楞次定律的应用和图像)如图甲所示,存在有界匀强磁场,磁感应强度大小均为B,方向分别垂直纸面向里和向外,磁场宽度均为L,在磁场区域的左侧相距为L处,有一边长为L的正方形导体线框,总电阻为R,且线框平面与磁场方向垂直. 现使线框以速度v匀速穿过磁场区域以初始位置为计时起点,规定电流逆时针方向时的电流和电动势方向 ks5u 为正,B垂直纸面向里时为正,那么以下关于线框中的感应电动势、磁通量、感应电流、和电功率的四个图象描述不正确的选项是 ( )
ks5u
解析:在第一段时间内,磁通量等于零,感应电动势为零,感应电流为零,电功率为零。
在第二段时间内,,,,。
在第三段时间内, ,,,。 ks5u
在第四段时间内, ,,,。此题选B。
规律总结:对应线圈穿过磁场产生感应电流的图像问题,应该注意以下几点:
⑴要划分每个不同的阶段,对每一过程采用楞次定律和法拉第电磁感应定律进行分析。
⑵要根据有关物理规律找到物理量间的函数关系式,以便确定图像的形状
⑶线圈穿越方向相反的两磁场时,要注意有两条边都切割磁感 ks5u 线产生感应电动势。
ks5u
题型2.(电磁感应中的动力学分析)如下列图,固定在绝缘水平面上的的金属框架cdef处于竖直向下的匀强磁场中,金属棒ab电阻为r,跨在框架上,可以无摩擦地滑动,其余电阻不计.在t=0时刻,磁感应强度为B0,adeb恰好构成一个边长为L的正方形.⑴假设从t=0时刻起,磁感应强度均匀增加,增加率为 ks5u k(T/s),用一个水平拉力让金属棒保持静止.在t=t1时刻, ks5u ks5u 所施加的对金属棒的水平拉力大小是多大?⑵假设从t=0时刻起,磁感应强度逐渐减小,当金属棒以速度v向右匀速运动时,可以使金属棒中恰好不产生感应电流.那么磁感应强度B应怎样随时间t变化?写出B与t间的函数关系式.
解析:
ks5u
规律总结:
ks5u
题型3.(电磁感应中的能量问题)如图甲所示,相距为L的光滑平行金属导轨水平放置,导轨一局部处在以OO′为右边界匀强磁场中,匀强磁场的磁感应强度大小为B,方向垂直 ks5u 导轨平面向下,导轨右侧接有定值电阻R,导轨电阻忽略不计. 在距边界OO′也为L处垂直导轨放置一质量为m、电阻r的金属杆ab.
(1)假设ab杆在恒力作用下由静止开始向右运动3L距离,其速度一位移的关系图象如图乙所示(图中所示量为量). 求此过程中电阻R上产生的焦耳QR及ab杆在刚要离开磁场时的加速度大小a. ks5u
(2)假设ab杆固定在导轨上的初始位置,使匀强磁场保持大小不变,绕OO′轴匀速转动. 假设从磁场方向由图示位置开始转过的过程中,电路中产生的焦耳热为Q2. 那么磁场转动的角速度ω大小是多少? ks5u
解析:(1)ab杆离起起始位置的位移从L到3L的过程中,由动能定 ks5u 理可得
(2分)
ab杆在磁场中由起始位置发生位移L的过程,根据功能关系,恒力F做的功等于ab杆 ks5u 杆增加的动能与回路产生的焦耳热之和,那么
(2分)
联立解得,(1分) R上产生热量(1分)
ab杆刚要离开磁场时,水平向上受安培力F总和恒力F作用, ks5u
安培力为:(2分)
由牛顿第二定律可得:(1分)
解得(1分) ks5u
(2)磁场旋转时,可等效为矩形闭合电路在匀强磁场中反方向匀速转动,所以闭合电路中产生正弦式电流,感应电动势的峰值(2分)
有效值 (2分) (1分) 而(1分) ks5u
题型4.(电磁感应中的电路问题)如下列图,匀强磁场的磁感应强度T,金属棒AD长 ks5u 0.4m,与框架宽度相同,电阻1/3,框架电阻不计,电阻R1=2,R2=1.当金属棒以5m/s速度匀速向右运动时,求:
(1)流过金属棒的感应电流为多大
(2)假设图中电容器C为0.3F,那么电容器中储存多少电荷量.
题型5.(电磁感应定律)穿过闭合回路的磁通量Φ随时间t变化的图像分别如以下列图①~④所示。以下关于回路中产生的感应电动势的论述中正确的选项是: ks5u
A图①中回路产生的感应电动势恒定不变
B图②中回路产生的感应电动势一直在变大
C图③中回路0~t1时间内产生的感应电动势小于在t1~t2时间内产生的感应电 ks5u 动势
D图④中回路产生的感应电动势先变小再变大 ks5u
t
Φ
①
Φ
②
Φ
③
t
t
t1
t2
t
Φ
④
o
o
o
o
解析:
丙图:0~t0斜率(不变)大于t0~2t0的斜率(不变)丁图:斜率先减小后增大 ks5u
D选项对。
题型6.(流过截面的电量问题)如图7-1,在匀强磁场中固定放置一根串接一电阻R的直角形 ks5u 金属导轨aob(在纸面内),磁场方向垂直于纸面朝里,另有两根金属导轨c、d分别平行于oa、ob放置。保持导轨之间接触良好,金属导轨的电阻不计。现经历以下四个过程:①以速度v移动d,使它与ob的距离增大一倍;②再以速率v移动c,使它与oa的距离减小一半;③然后,再以 ks5u ks5u 速率2v移动c,使它回到原处;④最后以速率2v移动d,使它也回到原处。设上述四个过程中通过电阻R的电量的大小依次为Q1、Q2、Q3和Q4,那么( )
O
R
a
c
d
b
A、Q1=Q2=Q3=Q4 B、Q1=Q2=2Q3=2Q4
C、2Q1=2Q2=Q3=Q4 D、Q1≠Q2=Q3≠Q4
解析:设开始导轨d与Ob的距离为x1,导轨c与Oa的距离为x2,由法拉第电磁感应定律知移动c或d时产生的感应电动势:E==,通过R的电量为:Q=I=Δt=。可见通过R的电量与导体d或c移动的速度无关,由于B与R为定值,其电量取决于所围成面积的 ks5u 变化。①假设导轨d与Ob距离增大一倍,即由x1变2x1,那么所围成的面积增大了ΔS1=x1·x2;②假设导轨c再与Oa距离减小一半,即由x2变为x2/2,那么所围成的面积又减小了ΔS2=2x1·x2/2=x1·x2;③假设导轨c再回到原处,此过程面积的变化为ΔS3=ΔS2=2x1·x2/2=x1·x2;④最后导轨d又回到原处,此过程面积的变化为ΔS4=x1·x2;由于ΔS1=ΔS2=ΔS3=ΔS4,那么通过电阻R的电量是 ks5u 相等的,即Q1=Q2=Q3=Q4。选A。
规律总结:计算感应电量的两条思路: ks5u
思路一:当闭合电路中的磁通量发生变化时,根据法拉第电磁感应定律,平均感应电动势E=NΔφ/Δt,平均感应电流I=E/R=NΔφ/RΔt,那么通过导体横截面的电量q=I=NΔφ/R。思路二:当导体棒在安培力(变力)作用下做变速运动,磁通量的变化难以确定时,常用动量定 ks5u 理通过求安培力的冲量求通过导体横截面积的电量。要快速求得通过导体横截面的电量Q,关键是正确求得穿过某一回路变化的磁通量ΔΦ。
题型7.(自感现象的应用) 如图1所示电路中, D1和D2是两个相同的小灯泡, L是一个自感系 ks5u ks5u 数很大的线圈, 其电阻与R相同, 由于存在自感现象, 在开关S接通和断开瞬间, D1和D2发亮的顺序是怎样的?
解析:开关接通时,由于线圈的自感作用,流过线圈的电流为零,D2与R并联再与D1串联,所以两灯同时亮;开关断开时,D2立即熄灭,由于线圈的自感作用,流过线圈的电流不能突变,线圈与等D1组成闭合回路,D1滞后一段时间灭。
规律总结:自感电动势仅仅是减缓了原电流的变化,不会阻止原电流的变化或逆转原电流的变化.原电流最终还是要增加到稳定值或减小到零 ,在自感现象发生的一瞬间电路中的电流 ks5u 为原值,然后逐渐改变。
题型8.(导体棒平动切割磁感线问题)如下列图,在一磁感应强度B=0.5T的匀强磁场中, ks5u 垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻。导轨上跨放着一根长为L=0.2m, ks5u 每米长电阻r=2.0Ω/m的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用于以速度v=4.0m/s向左做匀速运动时,试求: ks5u
(1)电阻R中的电流强度大小和方向;
(2)使金属棒做匀速运动的拉力;
(3)金属棒ab两端点间的电势差;
(4)回路中的发热功率。
解析:金属棒向左匀速运动时,等效电路如图、所示。在闭合回路中,金属棒cd局部相当于电源,内阻rcd=hr,电动势Ecd= ks5u Bhv。
(1)根据欧姆定律,R中的电流强度为0.4A,方向从N经R到Q。
(2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为F=F安=BIh=0.02N。
(3)金属棒ab两端的电势差等于Uac、Ucd与Udb三 ks5u 者之和,由于Ucd=Ecd-Ircd,所以Uab=Eab-Ircd=BLv-Ircd=0.32V。
(4)回路中的热功率P热=I2(R+hr)=0.08W。
规律总结:①不要把ab两端的电势差与ab棒产生的感应电动势这两个概念混为一谈。
②金属棒匀速运动时,拉力和安培力平衡,拉力做正功,安培力做负功,能量守恒,外力的机械功率和回路中的热功率相等,即。
题型9.(导体棒转动切割磁感线问题)一直升飞机停在南半球某处上空.设该处地磁场的方向