分享
2023年九级数学上册2二次函数的性质教案北京课改版.docx
下载文档

ID:576103

大小:12.35KB

页数:4页

格式:DOCX

时间:2023-04-11

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 级数 上册 二次 函数 性质 教案 北京 改版
二次函数的性质 教学目标: 1.从具体函数的图象中认识二次函数的根本性质. 2.了解二次函数与二次方程的相互关系. 3.探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念,会求二次函数的最值,并能根据性质判断函数在某一范围内的增减性 教学重点:二次函数的最大值,最小值及增减性的理解和求法. 教学难点:二次函数的性质的应用. 教学过程: 一、复习引入 二次函数: y=ax2 +bx + c (a ¹ 0)的图象是一条抛物线,它的开口由什么决定呢 补充: 当a的绝对值相等时,其形状完全相同,当a的绝对值越大,那么开口越小,反之成立. 二、新课教学: 1.探索填空: 根据下边已画好抛物线y= -2x2的顶点坐标是 , 对称轴是 , 在 侧,即x_____0时, y随着x的增大而增大;在 侧,即x_____0时, y随着x的增大而减小. 当x= 时,函数y最大值是____. 当x____0时,y<0. 0 y= -2x2 0 y= 2x2 y x 2. 探索填空::据上边已画好的函数图象填空: 抛物线y= 2x2的顶点坐标是 , 对称轴是 ,在 侧,即x_____0时, y随着x的增大而减少;在 侧,即x_____0时, y随着x的增大而增大. 当x= 时,函数y最小值是____. 当x____0时,y>0 3.归纳: 二次函数y=ax2+bx+c(a≠0)的图象和性质 (1).顶点坐标与对称轴 (2).位置与开口方向 (3).增减性与最值 当a ﹥0时,在对称轴的左侧,y随着x的增大而减小;在对称轴的右侧,y随着x的增大而增大;当 时,函数y有最小值 。当a ﹤0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x的增大而减小。当 时,函数y有最大值 4.探索二次函数与一元二次方程 二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如下列图. (1).每个图象与x轴有几个交点? (2).一元二次方程x2+2x=0,x2-2x+1=0有几个根验证一下一元二次方程x2-2x+2=0有根吗 (3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系 归纳: (3).二次函数y=ax2+bx+c的图象和x轴交点有三种情况: ①有两个交点, ②有一个交点, ③没有交点. 当二次函数y=ax2+bx+c的图象和x轴有交点时, 交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根. 当b2-4ac﹥0时,抛物线与x轴有两个交点,交点的横坐标是一元二次方程0=ax2+bx+c的两个根x1与 x2;当b2-4ac=0时,抛物线与x轴有且只有一个公共点;当b2-4ac﹤0时,抛物线与x轴没有交点。 举例: 求二次函数图象y=x2-3x+2与x轴的交点A、B的坐标。 结论1:方程x2-3x+2=0的解就是抛物线y=x2-3x+2与x轴的两个交点的横坐标。因此,抛物线与一元二次方程是有密切联系的。 即:假设一元二次方程ax2+bx+c=0的两个根是x1、x2,那么抛物线y=ax2+bx+c与轴的两个交点坐标分别是A( x1,0),B(x2,0) 5.例题教学:例1: 函数 ⑴写出函数图像的顶点、图像与坐标轴的交点,以及图像与y轴的交点关于图象对称轴的对称点。然后画出函数图像的草图; (2)自变量x在什么范围内时, y随着x的增大而增大?何时y随着x的增大而减少;并求出函数的最大值或最小值。 归纳:二次函数五点法的画法 三、稳固练习: 请完成同步练习 四、学习感想: 1、你能正确地说出二次函数的性质吗? 2、你能用“五点法〞快速地画出二次函数的图象吗?你能利用函数图象答复有关性质吗? 五、作业

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开