温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
年中
数学试题
分类
汇编
52
2023中考全国100份试卷分类汇编
全等三角形
1、〔2023陕西〕如图,在四边形中,对角线AB=AD,CB=CD,
B
C
D
A
O
第7题图
假设连接AC、BD相交于点O,那么图中全等三角形共有〔 〕
A.1对 B.2对 C.3对 D.4对
考点:全等三角形的判定。
解析:AB=AD,CB=CD,AC公用,因此△ABC≌△ADC〔SSS〕,
所以BAO=DAO,BCO=DCO,
所以△BAO≌△DAO〔SAS〕,
△BCO≌△DCO〔SAS〕,应选C
2、〔2023•雅安〕如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,以下结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有〔 〕个.
A.
2
B.
3
C.
4
D.
5
考点:
正方形的性质;全等三角形的判定与性质;等边三角形的性质.
分析:
通过条件可以得出△ABE≌△ADF而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和2S△ABE再通过比拟大小就可以得出结论
解答:
解:∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.
∵△AEF等边三角形,
∴AE=EF=AF,∠EAF=60°.X Kb1. Co m
∴∠BAE+∠DAF=30°.
在Rt△ABE和Rt△ADF中,
,
Rt△ABE≌Rt△ADF〔HL〕,
∴BE=DF,①正确.
∠BAE=∠DAF,
∴∠DAF+∠DAF=30°,
即∠DAF=15°②正确,
∵BC=CD,
∴BC﹣BE=CD﹣DF,
及CE=CF,
∵AE=AF,
∴AC垂直平分EF.③正确.
设EC=x,由勾股定理,得
EF=x,CG=x,AG=x,
∴AC=,
∴AB=,
∴BE=﹣x=,
∴BE+DF=x﹣x≠x,④错误,
∵S△CEF=,
S△ABE==,
∴2S△ABE==S△CEF,⑤正确.
综上所述,正确的有4个,应选C.
点评:
此题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答此题时运用勾股定理的性质解题时关键.
3、〔2023•铁岭〕如图,在△ABC和△DEB中,AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是〔 〕w W w .x K b 1.c o M
A.
BC=EC,∠B=∠E
B.
BC=EC,AC=DC
C.
BC=DC,∠A=∠D
D.
∠B=∠E,∠A=∠D
考点:
全等三角形的判定.
分析:
根据全等三角形的判定方法分别进行判定即可.
解答:
解:A、AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;
B、AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;
C、AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;
D、AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;
应选:C.
点评:
此题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,假设有两边一角对应相等时,角必须是两边的夹角.
4、〔2023•湘西州〕如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,那么△EDF与△BCF的周长之比是〔 〕
A.
1:2
B.
1:3
C.
1:4
D.
1:5
考点:
平行四边形的性质;全等三角形的判定与性质
分析:
根据平行四边形性质得出AD=BC,AD∥BC,推出△EDF∽△BCF,得出△EDF与△BCF的周长之比为,根据BC=AD=2DE代入求出即可.
解答:
解:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴△EDF∽△BCF,
∴△EDF与△BCF的周长之比为,
∵E是AD边上的中点,
∴AD=2DE,
∵AD=BC,
∴BC=2DE,
∴△EDF与△BCF的周长之比1:2,
应选A.
点评:
此题考查了平行四边形性质,相似三角形的性质和判定的应用,注意:平行四边形的对边平行且相等,相似三角形的周长之比等于相似比.
5、〔2023•绥化〕:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2〔AD2+AB2〕,
其中结论正确的个数是〔 〕
A.
1
B.
2
C.
3
D.
4
考点:
全等三角形的判定与性质;勾股定理;等腰直角三角形.
专题:
计算题.
分析:
①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出三角形ABD与三角形AEC全等,由全等三角形的对应边相等得到BD=CE,本选项正确;
②由三角形ABD与三角形AEC全等,得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD垂直于CE,本选项正确;
③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°,本选项正确;
④由BD垂直于CE,在直角三角形BDE中,利用勾股定理列出关系式,等量代换即可作出判断.
解答:
解:①∵∠BAC=∠DAE=90°,
∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,
∵在△BAD和△CAE中,
,
∴△BAD≌△CAE〔SAS〕,
∴BD=CE,本选项正确;
②∵△BAD≌△CAE,
∴∠ABD=∠ACE,
∵∠ABD+∠DBC=45°,
∴∠ACE+∠DBC=45°,
∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,
那么BD⊥CE,本选项正确;
③∵△ABC为等腰直角三角形,
∴∠ABC=∠ACB=45°,
∴∠ABD+∠DBC=45°,
∵∠ABD=∠ACE
∴∠ACE+∠DBC=45°,本选项正确;
④∵BD⊥CE,
∴在Rt△BDE中,利用勾股定理得:BE2=BD2+DE2,
∵△ADE为等腰直角三角形,
∴DE=AD,即DE2=2AD2,
∴BE2=BD2+DE2=BD2+2AD2,
而BD2≠2AB2,本选项错误,
综上,正确的个数为3个.
应选C
点评:
此题考查了全等三角形的判定与性质,勾股定理,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解此题的关键.
6、〔2023安顺〕如图,AE=CF,∠AFD=∠CEB,那么添加以下一个条件后,仍无法判定△ADF≌△CBE的是〔 〕
A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC
考点:全等三角形的判定.
分析:求出AF=CE,再根据全等三角形的判定定理判断即可.
解答:解:∵AE=CF,
∴AE+EF=CF+EF,
∴AF=CE,
A.∵在△ADF和△CBE中
∴△ADF≌△CBE〔ASA〕,正确,故本选项错误;
B.根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确;
C.∵在△ADF和△CBE中
∴△ADF≌△CBE〔SAS〕,正确,故本选项错误;
D.∵AD∥BC,
∴∠A=∠C,
∵在△ADF和△CBE中
∴△ADF≌△CBE〔ASA〕,正确,故本选项错误;
应选B.
点评:此题考查了平行线性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.
7、〔2023台湾、18〕附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与以下哪一个三角形全等?〔 〕
A.△ACF B.△ADE C.△ABC D.△BCF
考点:全等三角形的判定.
分析:根据全等三角形的判定定理〔SAS,ASA,AAS,SSS〕结合图形进行判断即可.
解答:解:根据图象可知△ACD和△ADE全等,
理由是:∵根据图形可知AD=AD,AE=AC,DE=DC,
∴△ACD≌△AED,
即△ACD和△ADE全等,
应选B.
点评:此题考查了全等三角形的判定的应用,主要考查学生的观察图形的能力和推理能力,注意:全等三角形的判定定理有:SAS,ASA,AAS,SSS.
8、〔2023•娄底〕如图,AB=AC,要使△ABE≌△ACD,应添加的条件是 ∠B=∠C或AE=AD 〔添加一个条件即可〕.
考点:
全等三角形的判定.
专题:
开放型.
分析:
要使△ABE≌△ACD,AB=AC,∠A=∠A,那么可以添加一个边从而利用SAS来判定其全等或添加一个角从而利用AAS来判定其全等.
解答:
解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.
故填∠B=∠C或AE=AD.
点评:
此题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据结合图形及判定方法选择条件是正确解答此题的关键.
9、〔2023•郴州〕如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是 ∠B=∠C〔答案不唯一〕 〔只写一个条件即可〕.
考点:
全等三角形的判定.3718684
专题:
开放型.
分析:
由题意得,AE=AD,∠A=∠A〔公共角〕,可选择利用AAS、SAS进行全等的判定,答案不唯一.
解答:
解:添加∠B=∠C.
在△ABE和△ACD中,∵,
∴△ABE≌△ACD〔AAS〕.
故答案可为:∠B=∠C.
点评:
此题考查了全等三角形的判定,属于开放型题目,解答此题需要同学们熟练掌握三角形全等的几种判定定理.
10、〔2023•白银〕如图,BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,那么应添加的一个条件为 AC=CD .〔答案不唯一,只需填一个〕
考点:
全等三角形的判定.
专题:
开放型.
分析:
可以添加条件AC=CD,再由条件∠BCE=∠ACD,可得∠ACB=∠DCE,再加上条件CB=EC,可根据SAS定理证明△ABC≌△DEC.
解答:
解:添加条件:AC=CD,
∵∠BCE=∠ACD,
∴∠ACB=∠DCE,
在△ABC和△DEC中,
∴△ABC≌△DEC〔SAS〕,
故答案为:AC=CD〔答案不唯一〕.
点评:
此题主要考查了考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,假设有两边一角对应相等时,角必须是两边的夹角.
11、〔2023•绥化〕如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB