弧长与扇形面积一、选择题1.〔2023·湖北十堰〕如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面〔不计损耗〕,那么该圆锥的高为〔〕A.10cmB.15cmC.10cmD.20cm【考点】圆锥的计算.【分析】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长,设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到r,然后利用勾股定理计算出圆锥的高.【解答】解:过O作OE⊥AB于E, OA=OD=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,那么2πr=20π,解得r=10,∴圆锥的高==20.应选D.【点评】此题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.2.(2023兰州,12,4分)如图,用一个半径为5cm的定滑轮带动重物上升,滑轮上一点P旋转了108º,假设绳索〔粗细不计〕与滑轮之间没有滑动,那么重物上升了〔〕〔A〕πcm(B)2πcm(C)3πcm(D)5πcm【答案】:C【解析】:利用弧长公式即可求解【考点】:有关圆的计算3.(2023福州,16,4分)如以下图的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,那么r上=r下.〔填“<〞“=〞“<〞〕【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比拟两个圆的半径即可.【解答】解:如图,r上=r下.故答案为=.【点评】此题考查了弧长公式:圆周长公式:C=2πR〔2〕弧长公式:l=〔弧长为l,圆心角度数为n,圆的半径为R〕;正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.4.(2023·四川资阳)在RtABC△中,∠ACB=90°,AC=2,以点B为圆心,BC的长为半径作弧,交AB于点D,假设点D为AB的中点,那么阴影局部的面积是〔〕A.2﹣πB.4﹣πC.2﹣πD.π【考点】扇形面积的计算.【分析】根据点D为AB的中点可知BC=BD=AB,故可得出∠A=30°,∠B=60°,再由锐角三角函数的定义求出BC的长,根据S阴影=SABC△S﹣扇形CBD即可得出结论.【解答】解: D为AB的中点,BC=BD=∴AB,A=30°∴∠,∠B=60°.AC=2 ,BC=AC•tan30°=2∴•=2,S∴阴影=SABC△S﹣扇形CBD=×2×2﹣=2﹣π.应选A.5.(2023·四川自贡)圆锥的底面半径为4cm,高为5cm,那么它...