分享
2023年中考数学试卷分类汇编解析图形的相似与位似.docx
下载文档

ID:488680

大小:833.56KB

页数:60页

格式:DOCX

时间:2023-04-04

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 年中 数学试卷 分类 汇编 解析 图形 相似
图形的相似与位似 一、选择题 1.〔2023·湖北十堰〕如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,OB=3OB′,那么△A′B′C′与△ABC的面积比为〔  〕 A.1:3 B.1:4 C.1:5 D.1:9 【考点】位似变换. 【分析】先求出位似比,根据位似比等于相似比,再由相似三角形的面积比等于相似比的平方即可. 【解答】解:∵OB=3OB′, ∴, ∵以点O为位似中心,将△ABC缩小后得到△A′B′C′, ∴△A′B′C′∽△ABC, ∴=. ∴=, 应选D 【点评】此题是位似变换,主要考查了位似比等于相似比,相似三角形的面积比等于相似比的平方,解此题的关键是掌握位似的性质. 2. 〔2023·湖北咸宁〕如图,在△ABC中,中线BE,CD相交于点O,连接DE,以下结论: ①=; ②=; ③=; ④=. 其中正确的个数有〔 〕 A. 1个 B. 2个 C.3个 D. 4个 〔第2题〕 【考点】三角形中位线定理,相似三角形的判定和性质. 【分析】①DE是△ABC的中位线,根据三角形的中位线等于第三边长度的一半可判断;②利用相似三角形面积的比等于相似比的平方可判定;③利用相似三角形的性质可判断;④利用相似三角面积的比等于相似比的平方可判定. 【解答】解:①∵DE是△ABC的中位线, ∴DE=BC,即=; 故①正确; ②∵DE是△ABC的中位线, ∴DE∥BC ∴△DOE∽△COB ∴=〔〕2=(〕2=, 故②错误; ③∵DE∥BC ∴△ADE∽△ABC ∴= △DOE∽△COB ∴= ∴=, 故③正确; ④∵△ABC的中线BE与CD交于点O。 ∴点O是△ABC的重心, 根据重心性质,BO=2OE,△ABC的高=3△BOC的高, 且△ABC与△BOC同底〔BC〕 ∴S△ABC =3S△BOC, 由②和③知, S△ODE=S△COB,S△ADE=S△BOC, ∴=. 故④正确. 综上,①③④正确. 应选C. 【点评】此题考查了三角形中位线定理,相似三角形的判定和性质.要熟知:三角形的中位线平行于第三边并且等于第三边长度的一半;相似三角形面积的比等于相似比的平方. 3. (2023·新疆)如图,在△ABC中,D、E分别是AB、AC的中点,以下说法中不正确的选项是〔  〕 A.DE=BC B. = C.△ADE∽△ABC D.S△ADE:S△ABC=1:2 【考点】相似三角形的判定与性质;三角形中位线定理. 【分析】根据中位线的性质定理得到DE∥BC,DE=BC,再根据平行线分线段成比例定理和相似三角形的性质即可判定. 【解答】解:∵D、E分别是AB、AC的中点, ∴DE∥BC,DE=BC, ∴=,△ADE∽△ABC, ∴, ∴A,B,C正确,D错误; 应选:D. 【点评】该题主要考查了平行线分线段成比例定理和相似三角形的性质即可判定;解题的关键是正确找出对应线段,准确列出比例式求解、计算、判断或证明. 4. (2023·云南)如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为〔  〕 A.15 B.10 C. D.5 【考点】相似三角形的判定与性质. 【分析】首先证明△ACD∽△BCA,由相似三角形的性质可得:△ACD的面积:△ABC的面积为1:4,因为△ABD的面积为9,进而求出△ACD的面积. 【解答】解:∵∠DAC=∠B,∠C=∠C, ∴△ACD∽△BCA, ∵AB=4,AD=2, ∴△ACD的面积:△ABC的面积为1:4, ∴△ACD的面积:△ABD的面积=1:3, ∵△ABD的面积为15, ∴△ACD的面积∴△ACD的面积=5. 应选D. 【点评】此题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型. 5. (2023·云南)在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,那么y关于x的函数关系用图象大致可以表示为〔  〕 A. B. C. D. 【考点】相似三角形的判定与性质;函数的图象;线段垂直平分线的性质. 【分析】由△DAH∽△CAB,得=,求出y与x关系,再确定x的取值范围即可解决问题. 【解答】解:∵DH垂直平分AC, ∴DA=DC,AH=HC=2, ∴∠DAC=∠DCH, ∵CD∥AB, ∴∠DCA=∠BAC, ∴∠DAN=∠BAC,∵∠DHA=∠B=90°, ∴△DAH∽△CAB, ∴=, ∴=, ∴y=, ∵AB<AC, ∴x<4, ∴图象是D. 应选D. 【点评】此题科学相似三角形的判定和性质、相等垂直平分线性质、反比例函数等知识,解题的关键是正确寻找相似三角形,构建函数关系,注意自变量的取值范围确实定,属于中考常考题型. 6. 〔2023·四川达州·3分〕如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.假设AB=10,BC=16,那么线段EF的长为〔  〕 A.2 B.3 C.4 D.5 【考点】相似三角形的判定与性质;平行线的判定;直角三角形斜边上的中线. 【分析】根据直角三角形斜边上中线是斜边的一半可得DF=AB=AD=BD=5且∠ABF=∠BFD,结合角平分线可得∠CBF=∠DFB,即DE∥BC,进而可得DE=8,由EF=DE﹣DF可得答案. 【解答】解:∵AF⊥BF, ∴∠AFB=90°, ∵AB=10,D为AB中点, ∴DF=AB=AD=BD=5, ∴∠ABF=∠BFD, 又∵BF平分∠ABC, ∴∠ABF=∠CBF, ∴∠CBF=∠DFB, ∴DE∥BC, ∴△ADE∽△ABC, ∴=,即, 解得:DE=8, ∴EF=DE﹣DF=3, 应选:B. 7.〔2023·山东烟台〕如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,假设正方形BEFG的边长为6,那么C点坐标为〔  〕 A.〔3,2〕 B.〔3,1〕 C.〔2,2〕 D.〔4,2〕 【考点】位似变换;坐标与图形性质;正方形的性质. 【分析】直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案. 【解答】解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为, ∴=, ∵BG=6, ∴AD=BC=2, ∵AD∥BG, ∴△OAD∽△OBG, ∴=, ∴=, 解得:OA=1, ∴OB=3, ∴C点坐标为:〔3,2〕, 应选:A. 8.〔2023·山西〕宽与长的比是〔约为0.618〕的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD,BC的中点E,F,连接EF;以点F为圆心,以FD为半径画弧,交BC的延长线与点G;作,交AD的延长线于点H.那么图中以下矩形是黄金矩形的是〔 D 〕 A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH 考点:黄金分割的识别 分析:由作图方法可知DF=CF,所以CG=,且GH=CD=2CF 从而得出黄金矩形 解答:CG=,GH=2CF ∴ ∴矩形DCGH是黄金矩形 选D. 9.〔2023·四川巴中〕如图,点D、E分别为△ABC的边AB、AC上的中点,那么△ADE的面积与四边形BCED的面积的比为〔  〕 A.1:2 B.1:3 C.1:4 D.1:1 【考点】相似三角形的判定与性质. 【分析】证明DE是△ABC的中位线,由三角形中位线定理得出DE∥BC,DE=BC,证出△ADE∽△ABC,由相似三角形的性质得出△ADE的面积:△ABC的面积=1:4,即可得出结果. 【解答】解:∵D、E分别为△ABC的边AB、AC上的中点, ∴DE是△ABC的中位线, ∴DE∥BC,DE=BC, ∴△ADE∽△ABC, ∴△ADE的面积:△ABC的面积=〔〕2=1:4, ∴△ADE的面积:四边形BCED的面积=1:3; 应选:B. 10.〔2023.山东省泰安市,3分〕如图,正△ABC的边长为4,点P为BC边上的任意一点〔不与点B、C重合〕,且∠APD=60°,PD交AB于点D.设BP=x,BD=y,那么y关于x的函数图象大致是〔  〕 A. B. C. D. 【分析】由△ABC是正三角形,∠APD=60°,可证得△BPD∽△CAP,然后由相似三角形的对应边成比例,即可求得答案. 【解答】解:∵△ABC是正三角形, ∴∠B=∠C=60°, ∵∠BPD+∠APD=∠C+∠CAP,∠APD=60°, ∴∠BPD=∠CAP, ∴△BPD∽△CAP, ∴BP:AC=BD:PC, ∵正△ABC的边长为4,BP=x,BD=y, ∴x:4=y:〔4﹣x〕, ∴y=﹣x2+x. 应选C. 【点评】此题考查了动点问题、二次函数的图象以及相似三角形的判定与性质.注意证得△BPD∽△CAP是关键. 11.〔2023.山东省威海市,3分〕如图,在△ABC中,∠B=∠C=36°,AB的垂直平分线交BC于点D,交AB于点H,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE,那么以下结论错误的选项是〔  〕 A. = B.AD,AE将∠BAC三等分 C.△ABE≌△ACD D.S△ADH=S△CEG 【考点】黄金分割;全等三角形的判定;线段垂直平分线的性质. 【分析】由题意知AB=AC、∠BAC=108°,根据中垂线性质得∠B=∠DAB=∠C=∠CAE=36°,从而知△BDA∽△BAC,得=,由∠ADC=∠DAC=72°得CD=CA=BA,进而根据黄金分割定义知==,可判断A;根据∠DAB=∠CAE=36°知∠DAE=36°可判断B;根据∠BAD+∠DAE=∠CAE+∠DAE=72°可得∠BAE=∠CAD,可证△BAE≌△CAD,即可判断C;由△BAE≌△CAD知S△BAD=S△CAE,根据DH垂直平分AB,EG垂直平分AC可得S△ADH=S△CEG,可判断D. 【解答】解:∵∠B=∠C=36°, ∴AB=AC,∠BAC=108°, ∵DH垂直平分AB,EG垂直平分AC, ∴DB=DA,EA=EC, ∴∠B=∠DAB=∠C=∠CAE=36°, ∴△BDA∽△BAC, ∴=, 又∵∠ADC=∠B+∠BAD=72°,∠DAC=∠BAC﹣∠BAD=72°, ∴∠ADC=∠DAC, ∴CD=CA=BA, ∴BD=BC﹣CD=BC﹣AB, 那么=,即==,故A错误; ∵∠BAC=108°,∠B=∠DAB=∠C=∠CAE=36°, ∴∠DAE=∠BAC﹣∠DAB﹣∠CAE=36°, 即∠DAB=∠DAE=∠CAE=36°, ∴AD,AE将∠BAC三等分,故B正确; ∵∠BAE=∠BAD+∠DAE=72°,∠CAD=∠CAE+∠DAE=72°, ∴∠BAE=∠CAD, 在△BAE和△CAD中, ∵, ∴△BAE≌△CAD,故C正确; 由△BAE≌△CAD可得S△BAE=S△CAD,即S△BAD+S△ADE=S△CAE+S△ADE, ∴S△BAD=S△CAE, 又∵DH垂直平分AB,EG垂直平分AC, ∴

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开