温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
年中
数学试卷
分类
汇编
29
2023中考全国100份试卷分类汇编
概率
1、(2023年临沂)如图,在平面直角坐标系中,点A1 , A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2〔0,2〕,分别以A1A2B1B2其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是
〔A〕 . (B) . (C) . (D) .
答案:D
解析:以A1A2B1B2其中的任意两点与点O为顶点作三角形,能作4个,其中A1B1O,A2B2O为等腰三角形,共2个,故概率为:
2、(2023年武汉)袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.以下事件是必然事件的是〔 〕
A.摸出的三个球中至少有一个球是黑球.
B.摸出的三个球中至少有一个球是白球.
C.摸出的三个球中至少有两个球是黑球.
D.摸出的三个球中至少有两个球是白球.
答案:A
解析:因为白球只有2个,所以,摸出三个球中,黑球至少有一个,选A。
3、〔2023四川南充,7,3分〕有五张卡片〔形状、大小、质地都相同〕,上面分别画有以以下图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆。将卡片反面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是 〔 〕
A. B. C. D.
答案:B
解析:既是轴对称图形,又是中心对称图形的有线段、圆,共2张,所以,所求概率为:
4、〔2023•宁波〕在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是〔 〕
考点:
概率公式.
分析:
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
解答:
解:解:根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,
从中随机摸出一个,那么摸到红球的概率是=.
应选:D.
点评:
此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P〔A〕=.
5、〔2023•内江〕同时抛掷A、B两个均匀的小立方体〔每个面上分别标有数字1,2,3,4,5,6〕,设两立方体朝上的数字分别为x、y,并以此确定点P〔x,y〕,那么点P落在抛物线y=﹣x2+3x上的概率为〔 〕
A.
B.
C.
D.
考点:
列表法与树状图法;二次函数图象上点的坐标特征.
专题:
阅读型.
分析:
画出树状图,再求出在抛物线上的点的坐标的个数,然后根据概率公式列式计算即可得解.
解答:
解:根据题意,画出树状图如下:
一共有36种情况,
当x=1时,y=﹣x2+3x=﹣12+3×1=2,
当x=2时,y=﹣x2+3x=﹣22+3×2=2,
当x=3时,y=﹣x2+3x=﹣32+3×3=0,
当x=4时,y=﹣x2+3x=﹣42+3×4=﹣4,
当x=5时,y=﹣x2+3x=﹣52+3×5=﹣10,
当x=6时,y=﹣x2+3x=﹣62+3×6=﹣18,
所以,点在抛物线上的情况有2种,
P〔点在抛物线上〕==.
应选A.
点评:
此题考查了列表法与树状图法,二次函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.
6、〔2023•自贡〕在四张反面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,那么抽到卡片上印有的图案都是轴对称图形的概率为〔 〕
A.
B.
C.
D.
考点:
列表法与树状图法;轴对称图形.3718684
分析:
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到卡片上印有的图案都是轴对称图形的情况,再利用概率公式求解即可求得答案.
解答:
解:分别用A、B、C、D表示等腰三角形、平行四边形、菱形、圆,
画树状图得:
∵共有12种等可能的结果,抽到卡片上印有的图案都是轴对称图形的有6种情况,
∴抽到卡片上印有的图案都是轴对称图形的概率为:=.
应选D.
点评:
此题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
7、〔2023•资阳〕在一个不透明的盒子里,装有4个黑球和假设干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,那么估计盒子中大约有白球〔 〕
A.
12个
B.
16个
C.
20个
D.
30个
考点:
模拟实验
分析:
根据共摸球40次,其中10次摸到黑球,那么摸到黑球与摸到白球的次数之比为1:3,由此可估计口袋中黑球和白球个数之比为1:3;即可计算出白球数.
解答:
解:∵共摸了40次,其中10次摸到黑球,
∴有30次摸到白球,
∴摸到黑球与摸到白球的次数之比为1:3,
∴口袋中黑球和白球个数之比为1:3,
4÷=12〔个〕.
应选:A.
点评:
此题考查的是通过样本去估计总体,只需将样本“成比例地放大〞为总体即可.
8、〔2023•攀枝花〕以下表达正确的选项是〔 〕
A.
“如果a,b是实数,那么a+b=b+a〞是不确定事件
B.
某种彩票的中奖概率为,是指买7张彩票一定有一张中奖
C.
为了了解一批炮弹的杀伤力,采用普查的调查方式比拟适宜
D.
“某班50位同学中恰有2位同学生日是同一天〞是随机事件
考点:
随机事件;全面调查与抽样调查;概率的意义.
分析:
根据确定事件、随机事件的定义,以及概率的意义即可作出判断.
解答:
解:A、“如果a,b是实数,那么a+b=b+a〞是必然事件,选项错误;
B、某种彩票的中奖概率为,是指中奖的时机是,应选项错误;
C、为了了解一批炮弹的杀伤力,调查具有破坏性,应采用普查的抽查方式比拟适宜;
D、正确.
应选D.
点评:
解决此题需要正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
9、〔2023•绍兴〕一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色可以不同外其他完全相同,那么从袋子中随机摸出一个球是黄球的概率为〔 〕
A.
B.
C.
D.
考点:
概率公式.3718684
分析:
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.
解答:
解:根据题意可得:袋子中有3个白球,2个黄球和1个红球,共6个,
从袋子中随机摸出一个球,它是黄球的概率2÷6=.
应选:B.
点评:
此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P〔A〕=.
10、一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,求这张卡片与口袋外的两张卡片上的数能构
A. B. C. D.1
考点:
列表法与树状图法;三角形三边关系.
分析:
先通过列表展示所有4种等可能的结果数,利用三角形三边的关系得到其中三个数能构成三角形的有2,2,3;3,2,3,2;4,2,3共三种可能,然后根据概率的定义计算即可.
解答:
解:列表如下:
共有4种等可能的结果数,其中三个数能构成三角形的有2,2,3;3,2,3,2;4,2,3.
所以这张卡片与口袋外的两张卡片上的数能构成三角形的概率=.
应选C.
点评:
此题考查了列表法与树状图法:先通过列表法或树状图法展示所有等可能的结果数n,再找出其中某事件所占有的结果数m,然后根据概率的定义计算这个事件的概率=.也考查了三角形三边的关系.
11、〔2023泰安〕有三张正面分别写有数字﹣1,1,2的卡片,它们反面完全相同,现将这三张卡片反面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,那么点〔a,b〕在第二象限的概率为〔 〕
考点:列表法与树状图法;点的坐标.
专题:图表型.
分析:画出树状图,然后确定出在第二象限的点的个数,再根据概率公式列式进行计算即可得解.
解答:解:根据题意,画出树状图如下:
一共有6种情况,在第二象限的点有〔﹣1,1〕〔﹣1,2〕共2个,
所以,P==.
应选B.
点评:此题考查了列表法与树状图法,第二象限点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.
12、〔2023聊城〕以下事件:①在足球赛中,弱队战胜强队.
②抛掷1枚硬币,硬币落地时正面朝上.
③任取两个正整数,其和大于1
④长为3cm,5cm,9cm的三条线段能围成一个三角形.
其中确定事件有〔 〕
A.1个 B.2个 C.3个 D.4个
考点:随机事件.
分析:根据随机事件的定义对各选项进行逐一分析即可.
解答:解:A.在足球赛中,弱队战胜强队是随机事件,故本选项正确;
B.抛掷1枚硬币,硬币落地时正面朝上是随机事件,故本选项正确;
C.任取两个正整数,其和大于1是必然事件,故本选项错误;
D.长为3cm,5cm,9cm的三条线段能围成一个三角形是不可能事件,故本选项错误.
应选B.
点评:此题考查的是随机事件,即在一定条件下,可能发生也可能不发生的事件,称为随机事件.
13、〔2023• 德州〕一项“过关游戏〞规定:在过第n关时要将一颗质地均匀的骰子〔六个面上分别刻有1到6的点数〕抛掷n次,假设n次抛掷所出现的点数之和大于n2,那么算过关;否那么不算过关,那么能过第二关的概率是〔 〕
A. B. C. D.
考点:
列表法与树状图法.
分析:
由在过第n关时要将一颗质地均匀的骰子〔六个面上分别刻有1到6的点数〕抛掷n次,n次抛掷所出现的点数之和大于n2,那么算过关;可得能过第二关的抛掷所出现的点数之和需要大于5,然后根据题意列出表格,由表格求得所有等可能的结果与能过第二关的情况,再利用概率公式求解即可求得答案.
解答:
解:∵在过第n关时要将一颗质地均匀的骰子〔六个面上分别刻有1到6的点数〕抛掷n次,n次抛掷所出现的点数之和大于n2,那么算过关;
∴能过第二关的抛掷所出现的点数之和需要大于5,
列表得:
6
7
8
9
10
11
12
5
6
7
8
9
10
11
4
5
6
7
8
9
10
3
4
5
6
7
8
9
2
3
4
5
6
7
8
1
2
3
4
5
6
7
1
2
3
4
5
6
∵共有36种等可能的结果,能过第二关的有26种情况,
∴能过第二关的概率是:=.
应选A.
点评:
此题考查的是用列表法或