分享
2023年中考数学试卷分类汇编25.docx
下载文档

ID:488662

大小:811.43KB

页数:30页

格式:DOCX

时间:2023-04-04

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 年中 数学试卷 分类 汇编 25
2023中考全国100份试卷分类汇编 勾股定理 1、〔2023•昆明〕如图,在正方形ABCD中,点P是AB上一动点〔不与A,B重合〕,对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.以下结论: ①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点. 其中正确的结论有〔  〕   A. 5个 B. 4个 C. 3个 D. 2个 考点: 相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;正方形的性质 分析: 依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形,从而作出判断. 解答: 解:∵四边形ABCD是正方形, ∴∠BAC=∠DAC=45°. ∵在△APE和△AME中, , ∴△APE≌△AME,故①正确; ∴PE=EM=PM, 同理,FP=FN=NP. ∵正方形ABCD中AC⊥BD, 又∵PE⊥AC,PF⊥BD, ∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE ∴四边形PEOF是矩形. ∴PF=OE, ∴PE+PF=OA, 又∵PE=EM=PM,FP=FN=NP,OA=AC, ∴PM+PN=AC,故②正确; ∵四边形PEOF是矩形, ∴PE=OF, 在直角△OPF中,OF2+PF2=PO2, ∴PE2+PF2=PO2,故③正确. ∵△BNF是等腰直角三角形,而△POF不一定是,故④错误; ∵△AMP是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形. ∴PM=PN, 又∵△AMP和△BPN都是等腰直角三角形, ∴AP=BP,即P时AB的中点.故⑤正确. 应选B. 点评: 此题是正方形的性质、矩形的判定、勾股定理得综合应用,认识△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形是关键. 2、〔2023达州〕如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有□ADCE中,DE最小的值是〔  〕 A.2 B.3 C.4 D.5 答案:B 解析:由勾股定理,得AC=5,因为平行边形的对角线互相平分,所以,DE一定经过AC中点O,当DE⊥BC时,DE最小,此时OD=,所以最小值DE=3 3、〔2023•自贡〕如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,那么△EFC的周长为〔  〕   A. 11 B. 10 C. 9 D. 8 考点: 相似三角形的判定与性质;勾股定理;平行四边形的性质.3718684 分析: 判断出△ADF是等腰三角形,△ABE是等腰三角形,DF的长度,继而得到EC的长度,在Rt△BGE中求出GE,继而得到AE,求出△ABE的周长,根据相似三角形的周长之比等于相似比,可得出△EFC的周长. 解答: 解:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E, ∴∠BAF=∠DAF, ∵AB∥DF,AD∥BC, ∴∠BAF=∠F=∠DAF,∠BAE=∠AEB, ∴AB=BE=6,AD=DF=9, ∴△ADF是等腰三角形,△ABE是等腰三角形, ∵AD∥BC, ∴△EFC是等腰三角形,且FC=CE, ∴EC=FC=9﹣6=3, 在△ABG中,BG⊥AE,AB=6,BG=4, ∴AG==2, ∴AE=2AG=4, ∴△ABE的周长等于16, 又∵△CEF∽△BEA,相似比为1:2, ∴△CEF的周长为8. 应选D. 点评: 此题主要考查了勾股定理、相似三角形、等腰三角形的性质,注意掌握相似三角形的周长之比等于相似比,此题难度较大. 4、〔2023•资阳〕如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,那么阴影局部的面积是〔  〕   A. 48 B. 60 C. 76 D. 80 考点: 勾股定理;正方形的性质. 分析: 由得△ABE为直角三角形,用勾股定理求正方形的边长AB,用S阴影局部=S正方形ABCD﹣S△ABE求面积. 解答: 解:∵∠AEB=90°,AE=6,BE=8, ∴在Rt△ABE中,AB2=AE2+BE2=100, ∴S阴影局部=S正方形ABCD﹣S△ABE=AB2﹣×AE×BE =100﹣×6×8 =76. 应选C. 点评: 此题考查了勾股定理的运用,正方形的性质.关键是判断△ABE为直角三角形,运用勾股定理及面积公式求解. 5、〔2023•泸州〕如图,菱形ABCD的两条对角线相交于O,假设AC=6,BD=4,那么菱形ABCD的周长是〔  〕   A. 24 B. 16 C. 4 D. 2 考点: 菱形的性质;勾股定理. 分析: 由菱形ABCD的两条对角线相交于O,AC=6,BD=4,即可得AC⊥BD,求得OA与OB的长,然后利用勾股定理,求得AB的长,继而求得答案. 解答: 解:∵四边形ABCD是菱形,AC=6,BD=4, ∴AC⊥BD,OA=AC=3,OB=BD=2,AB=BC=CD=AD, ∴在Rt△AOB中,AB==, ∴菱形的周长是:4AB=4. 应选C. 点评: 此题考查了菱形的性质与勾股定理.此题难度不大,注意掌握数形结合思想的应用. 6、〔2023泰安〕如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,假设DG=1,那么AE的边长为〔  〕   A.2 B.4 C.4 D.8 考点:平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理. 专题:计算题. 分析:由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长. 解答:解:∵AE为∠ADB的平分线, ∴∠DAE=∠BAE, ∵DC∥AB, ∴∠BAE=∠DFA, ∴∠DAE=∠DFA, ∴AD=FD, 又F为DC的中点, ∴DF=CF, ∴AD=DF=DC=AB=2, 在Rt△ADG中,根据勾股定理得:AG=, 那么AF=2AG=2, 在△ADF和△ECF中, , ∴△ADF≌△ECF〔AAS〕, ∴AF=EF, 那么AE=2AF=4. 应选B 点评:此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解此题的关键. 7、〔2023•苏州〕如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B的坐标为〔3,〕,点C的坐标为〔,0〕,点P为斜边OB上的一个动点,那么PA+PC的最小值为〔  〕   A. B. C. D. 2 考点: 轴对称-最短路线问题;坐标与图形性质.3718684 分析: 作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,那么此时PA+PC的值最小,求出AM,求出AD,求出DN、CN,根据勾股定理求出CD,即可得出答案. 解答: 解:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N, 那么此时PA+PC的值最小, ∵DP=PA, ∴PA+PC=PD+PC=CD, ∵B〔3,〕, ∴AB=,OA=3,∠B=60°,由勾股定理得:OB=2, 由三角形面积公式得:×OA×AB=×OB×AM, ∴AM=, ∴AD=2×=3, ∵∠AMB=90°,∠B=60°, ∴∠BAM=30°, ∵∠BAO=90°, ∴∠OAM=60°, ∵DN⊥OA, ∴∠NDA=30°, ∴AN=AD=,由勾股定理得:DN=, ∵C〔,0〕, ∴CN=3﹣﹣=1, 在Rt△DNC中,由勾股定理得:DC==, 即PA+PC的最小值是, 应选B. 点评: 此题考查了三角形的内角和定理,轴对称﹣最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P点的位置,题目比拟好,难度适中. 8、〔2023•鄂州〕如图,直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,那么此时AM+NB=〔  〕   A. 6 B. 8 C. 10 D. 12 考点: 勾股定理的应用;线段的性质:两点之间线段最短;平行线之间的距离.3718684 分析: MN表示直线a与直线b之间的距离,是定值,只要满足AM+NB的值最小即可,作点A关于直线a的对称点A′,连接A′B交直线b与点N,过点N作NM⊥直线a,连接AM,那么可判断四边形AA′NM是平行四边形,得出AM=A′N,由两点之间线段最短,可得此时AM+NB的值最小.过点B作BE⊥AA′,交AA′于点E,在Rt△ABE中求出BE,在Rt△A′BE中求出A′B即可得出AM+NB. 解答: 解:作点A关于直线a的对称点A′,连接A′B交直线b与点N,过点N作NM⊥直线a,连接AM, ∵A到直线a的距离为2,a与b之间的距离为4, ∴AA′=MN=4, ∴四边形AA′NM是平行四边形, ∴AM+NB=A′N+NB=A′B, 过点B作BE⊥AA′,交AA′于点E, 易得AE=2+4+3=9,AB=2,A′E=2+3=5, 在Rt△AEB中,BE==, 在Rt△A′EB中,A′B==8. 应选B. 点评: 此题考查了勾股定理的应用、平行线之间的距离,解答此题的关键是找到点M、点N的位置,难度较大,注意掌握两点之间线段最短.   9、〔2023•绥化〕:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论: ①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2〔AD2+AB2〕, 其中结论正确的个数是〔  〕   A. 1 B. 2 C. 3 D. 4 考点: 全等三角形的判定与性质;勾股定理;等腰直角三角形. 专题: 计算题. 分析: ①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出三角形ABD与三角形AEC全等,由全等三角形的对应边相等得到BD=CE,本选项正确; ②由三角形ABD与三角形AEC全等,得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD垂直于CE,本选项正确; ③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°,本选项正确; ④由BD垂直于CE,在直角三角形BDE中,利用勾股定理列出关系式,等量代换即可作出判断. 解答: 解:①∵∠BAC=∠DAE=90°, ∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE, ∵在△BAD

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开