分享
2023年中考数学试卷分类汇编14.docx
下载文档

ID:488656

大小:151.95KB

页数:10页

格式:DOCX

时间:2023-04-04

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 年中 数学试卷 分类 汇编 14
2023中考全国100份试卷分类汇编 二次根式 1、〔2023年潍坊市〕实数0.5的算术平方根等于〔 〕. A.2 B. C. D. 答案:C. 考点:算术平方根。 点评:理解算术平方根的意义,把二次根式化成最简形式是解答此题的关键. 2、〔2-3二次根式·2023东营中考〕的算术平方根是〔 〕 A. B. 4 C. D. 2 D.解析:因为 ,所以 的算术平方根就是4的算术平方根,4的算术平方根为2. 3、〔2023•昆明〕以下运算正确的选项是〔  〕   A. x6+x2=x3 B.   C. 〔x+2y〕2=x2+2xy+4y2 D. 考点: 完全平方公式;立方根;合并同类项;二次根式的加减法 分析: A、本选项不能合并,错误; B、利用立方根的定义化简得到结果,即可做出判断; C、利用完全平方公式展开得到结果,即可做出判断; D、利用二次根式的化简公式化简,合并得到结果,即可做出判断. 解答: 解:A、本选项不能合并,错误; B、=﹣2,本选项错误; C、〔x+2y〕2=x2+4xy+4y2,本选项错误; D、﹣=3﹣2=,本选项正确. 应选D 点评: 此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法那么是解此题的关键. 4、(2023年临沂)计算的结果是 (A). (B). (C). (D). 答案:B 解析:=,选B。 5、(2023年武汉)式子在实数范围内有意义,那么x的取值范围是〔 〕 A.<1 B.≥1 C.≤-1 D.<-1 答案:B 解析:由二次根式的意义,知:x-1≥0,所以x≥1。 6、〔2023凉山州〕如果代数式有意义,那么x的取值范围是〔  〕   A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1 考点:分式有意义的条件;二次根式有意义的条件. 专题:计算题. 分析:代数式有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围. 解答:解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.应选D. 点评:式子必须同时满足分式有意义和二次根式有意义两个条件. 分式有意义的条件为:分母≠0; 二次根式有意义的条件为:被开方数≥0. 此类题的易错点是无视了二次根式有意义的条件,导致漏解情况.  7、〔2023•资阳〕16的平方根是〔  〕   A. 4 B. ±4 C. 8 D. ±8 考点: 平方根. 分析: 根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,那么x就是a的平方根,由此即可解决问题. 解答: 解:∵〔±4〕2=16, ∴16的平方根是±4. 应选B. 点评: 此题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根. 8、〔2023鞍山〕要使式子有意义,那么x的取值范围是〔  〕   A.x>0 B.x≥﹣2 C.x≥2 D.x≤2 考点:二次根式有意义的条件. 分析:根据被开方数大于等于0列式计算即可得解. 解答:解:根据题意得,2﹣x≥0, 解得x≤2. 应选D. 点评:此题考查的知识点为:二次根式的被开方数是非负数.  9、〔2023•泰州〕以下计算正确的选项是〔  〕   A. 4 B. C. 2= D. 3 考点: 二次根式的加减法;二次根式的性质与化简. 分析: 根据二次根式的化简及同类二次根式的合并,分别进行各选项的判断即可. 解答: 解:A、4﹣3=,原式计算错误,故本选项错误; B、与不是同类二次根式,不能直接合并,故本选项错误; C、2=,计算正确,故本选项正确; D、3+2≠5,原式计算错误,故本选项错误; 应选C. 点评: 此题考查了二次根式的加减,解答此题的关键掌握二次根式的化简及同类二次根式的合并. 10、〔2023•苏州〕假设式子在实数范围内有意义,那么x的取值范围是〔  〕   A. x>1 B. x<1 C. x≥1 D. x≤1 考点: 二次根式有意义的条件. 分析: 根据二次根式有意义的条件可得x﹣1≥0,再解不等式即可. 解答: 解:由题意得:x﹣1≥0, 解得:x≥1, 应选:C. 点评: 此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数. 11、〔2023•娄底〕式子有意义的x的取值范围是〔  〕   A. x≥﹣且x≠1 B. x≠1 C. D. 考点: 二次根式有意义的条件;分式有意义的条件. 分析: 根据被开方数大于等于0,分母不等于0列式进行计算即可得解. 解答: 解:根据题意得,2x+1≥0且x﹣1≠0, 解得x≥﹣且x≠1. 应选A. 点评: 此题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数. 12、〔2023•张家界〕以下运算正确的选项是〔  〕   A. 3a﹣2a=1 B. x8﹣x4=x2 C. D. ﹣〔2x2y〕3=﹣8x6y3 考点: 幂的乘方与积的乘方;合并同类项;二次根式的性质与化简.3718684 专题: 计算题. 分析: A、合并同类项得到结果,即可作出判断; B、本选项不能合并,错误; C、利用二次根式的化简公式计算得到结果,即可作出判断; D、原式利用积的乘方与幂的乘方运算法那么计算得到结果,即可作出判断. 解答: 解:A、3a﹣2a=a,本选项错误; B、本选项不能合并,错误; C、=|﹣2|=2,本选项错误; D、﹣〔2x2y〕3=﹣8x6y3,本选项正确, 应选D 点评: 此题考查了积的乘方与幂的乘方,合并同类项,同底数幂的乘法,熟练掌握公式及法那么是解此题的关键. 13、〔2023•宜昌〕假设式子在实数范围内有意义,那么x的取值范围是〔  〕   A. x=1 B. x≥1 C. x>1 D. x<1 考点: 二次根式有意义的条件. 分析: 二次根式有意义:被开方数是非负数. 解答: 解:由题意,得 x﹣1≥0, 解得,x≥1. 应选B. 点评: 考查了二次根式的意义和性质.概念:式子〔a≥0〕叫二次根式.性质:二次根式中的被开方数必须是非负数,否那么二次根式无意义. 14、〔2023•钦州〕以下运算正确的选项是〔  〕   A. 5﹣1= B. x2•x3=x6 C. 〔a+b〕2=a2+b2 D. = 考点: 二次根式的加减法;同底数幂的乘法;完全平方公式;负整数指数幂.3718684 分析: 根据负整数指数幂、同底数幂的乘法、同类二次根式的合并及完全平方公式,分别进行各选项的判断即可得出答案. 解答: 解:A、5﹣1=,原式计算正确,故本选项正确; B、x2•x3=x5,原式计算错误,故本选项错误; C、〔a+b〕2=a2+2ab+b2,原式计算错误,故本选项错误; D、与不是同类二次根式,不能直接合并,原式计算错误,故本选项错误; 应选A. 点评: 此题考查了二次根式的加减运算、同底数幂的乘法及完全平方公式,掌握各局部的运算法那么是关键. 15、〔2023•南宁〕以下各式计算正确的选项是〔  〕   A. 3a3+2a2=5a6 B. C. a4•a2=a8 D. 〔ab2〕3=ab6 考点: 二次根式的加减法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.3718684 专题: 计算题. 分析: 分别根据合并同类项、同底数幂的乘法法那么及幂的乘方与积的乘方法那么对各选项进行逐一判断即可. 解答: 解:A、3a3与2a2不是同类项,不能合并,故本选项错误; B、2+=3,故本选项正确; C、a4•a2=a6,故本选项错误; D、〔ab2〕3=a3b6,故本选项错误. 应选B. 点评: 此题考查的是二次根式的加减法,即二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变. 16、〔2023年广州市〕假设代数式有意义,那么实数x的取值范围是〔 〕 A B C D 分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围 解:根据题意得:,解得:x≥0且x≠1.应选D. 点评:此题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数 17、〔2023年佛山市〕化简的结果是( ) A. B. C. D. 分析:分子、分母同时乘以〔+1〕即可 解:原式===2+. 应选D. 点评:此题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键 18、〔2023•昆明〕求9的平方根的值为 ±3 . 考点: 平方根. 分析: 根据平方根的定义解答. 解答: 解:∵〔±3〕2=9, ∴9的平方根的值为±3. 故答案为:±3. 点评: 此题考查了平方根的定义,是根底题,熟记概念是解题的关键. 19、(2023年江西省)如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,假设AB=2,BC=2,那么图中阴影局部的面积为 . 【答案】 2. 【考点解剖】 此题考查了阴影局部面积的求法,涉及矩形的中心对称性、面积割补法、矩形的面积计算公式等知识,解题思路方法多样,计算也并不复杂,假设分别计算再相加,那么耗时耗力,仔细观察不难发现阴影局部的面积其实就是原矩形面积的一半〔即〕,这种“整体思想〞事半功倍,所以平时要加强数学思想、方法的学习与积累. 【解题思路】 △BCN与△ADM全等,面积也相等,口DFMN与口BEMN的面积也相等,所以阴影局部的面积其实就是原矩形面积的一半. 【解答过程】 ,即阴影局部的面积为. 【方法规律】 仔细观察图形特点,搞清局部与整体的关系,把不规那么的图形转化为规那么的来计算. 【关键词】 矩形的面积 二次根式的运算 整体思想 20、〔2023•曲靖〕假设整数x满足|x|≤3,那么使为整数的x的值是 ﹣2 〔只需填一个〕. 考点: 二次根式的定义. 分析: 先求出x的取值范围,再根据算术平方根的定义解答. 解答: 解:∵|x|≤3, ∴﹣3≤x≤3, ∴当x=﹣2时,==3, x=3时,==2. 故,使为整数的x的值是﹣2或3〔填写一个即可〕. 故答案为:﹣2. 点评: 此题考查了二次根式的定义,熟记常见的平方数是解题的关键. 21、〔德阳市2023年〕假设,那么=_____ 答案:6 解析:原方程变为:,所以,,由得: =3,两边平方,得:=7,所以,原式=7-1=6 22、(2023年南京)计算 - 的结果是 。 答案: 解析:原式= 23、〔2023•嘉兴〕二次根式中,x的取值范围是 x≥3 . 考点: 二次根式有意义的条件. 分析: 根据二次根式的性质,被开方数大于或等于0,可以求出x的范围. 解答: 解:根据题意得:x﹣3≥0, 解得:x≥3. 故答案是:x≥3. 点评: 此题考查的知识点为:二次根式的被开方数是非负数. 24、〔2023泰安〕化简:〔﹣〕﹣﹣|﹣3|=

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开