温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
年八级
上册
1111
三角形
教案
范文
学海无涯
八年级上册,11.1.1三角形的边,,教案
篇一:人教版八年级上册11.1与三角形有关的线段三角形的边
7.1.1 三角形的边〔总第17课时〕
教学目的:
知识与技能:结合三角形的实例,探究、掌握三角形3条边之间的关系. 会用符号表示三角形,理解按边关系对三角形进展分类. 理解三角形三边之间的不等关系,并会初步应用它们来处理征询
题.
过程与方法:结合详细实例,进一步认识三角形的概念及其根本要素,掌握
三角形三边关系。
情感、态度和价值观:通过观察、操作、想象、推理、交流等活动,开展空
间观念、推理才能和有条理地表达才能
重 点:三角形的三边之间的不等关系.
难 点:应用三角形的三边之间的不等关系推断3条线段能否组成三角形. 教学过程:
一、征询题情境:
三角形是我们早已熟悉的图形,你能列举出日常生活中有什么物体是三角形吗?关于三角形,你理解了哪些方面的知识?你能画一个三角形吗?
二、新课学习:
⒈三角形的相关概念.
⑴什么是三角形:
如图⑴,由不在同一条直线上的三条线段首尾顺次相接
所组成的图形叫做三角形 .
⑵三角形的有关概念:
①边:组成三角形的三条线段 叫做三角形的三条边.
②角:三角形相邻两边的夹角叫做三角形的内角,简称三角形的角 . ③顶点:三角形相邻两边的公共端点叫做三角形的顶点.
⑶三角形的表示:
如图⑴以A、B、C为顶点的三角形记作“⊿ABC 〞,读作“三角形ABC〞. ⑷三角形的分类:如图⑵
①等边三角形:图⑵中⑴的⊿ABC的边
AB=BC=AC,⊿ABC是等边 三角形.
即:三条边都相等的三角形叫做等边三角形.
②等腰三角形:图⑵中⑵的⊿ABC的边
AB=AC,但AB≠BC, AC≠BC,⊿ABC是等腰 三角形.
即:有两条边相等 的三角形叫做等腰三角形.等腰三角形中,相等的边 叫做腰,另一边 叫做底,两腰 的夹角叫做顶角,腰 和底 的夹角叫做底角.
留意:等边三角形是特别 的等腰三角形,即腰和底相等的等腰三角形. ③不等边三角形:图⑵中⑶的⊿ABC的边AB≠AC≠BC≠AB,⊿ABC是不等边三角形.
即:三条边都不相等的三角形叫做不等边三角形.
综上三角形按边分类关系如下
三条边都不相等的三角形: .
三角形腰和底不相等的: .
腰和底相等的: .
⑸练习:教材P65练习 “1〞〔口答〕
⑹讨论与交流: 如图⑶,存在AB1,AB2,AB3,···AB9,
AB10,10条线段,且B1,B2, ···B10在同一条直线上,
那么,图中三角形共有45 个.
⒉三角形三边关系: 阅读教材P64“探究〞完成以下征询题:
⑴如图⑷,按照线段公里“两点之间线段最短〞可得,⊿ABC的三边 满足以下关系:AB +BC >AC ;AB +AC >BC ;BC +AC >AB .
或:c +a >b ; c +b >a ; a +b >c .
即:三角形任意两边的和 大于第三边 .
上述关系也可表示为:
a -b <c ; b -c <a ; c -a <b 或b-a <c ; c -b <a ; a -c <b .
即:三角形任意两边的差 小于第三边 .
留意:综合上可知:三角形任意一边小于 其他两边的和,同时大于 其他两边的差.
⑵练习:教材P65练习“2〞 〔口答〕
说明:应用三角形三边之间的关系断定三条线段能否构成三角形时,常常只要两
条较短的线段长度之和大于第三条线段的长度即可.
⑶例解与应用:阅读教材P64例,解答以下征询题:
一个等腰三角形的周长为28cm.
①已经明白腰长是底边长的3倍,求各边的长;
②已经明白其中一边的长为6cm,求其它两边的长.
解:①设底边长为x cm ,那么腰长为3x cm,按照题意得x+3x+3x=28
解得 x=4.
因此 3x=3×4=12.即:等腰三角形的三边长分别为4 cm,12 cm,12 cm .
②假设腰长为6cm ,那么底边长为28-2×6=16cm ,现在6+6<16,故不能组成三角形,因此腰长不能为6.
假设底边长为6cm,那么腰长为﹙28-6﹚÷2=11cm ,它能构成三角形.
因此它的其它边长为11cm、11cm .
⑷讨论与交流:
①假设三条线段的比是①1∶3∶4;②1∶2∶3;③1∶4∶6;④3∶3∶6;⑤6∶6∶
10;⑥3∶4∶5.其中能构成三角形的有 2个.
②假设a,b,c分别是三角形的三边,化简︱a-b-c︱+︱b-c-a︱+︱c-a+b︱
=.
③已经明白一个等腰三角形的两边长分别为5cm和9cm,那么这个三角形的周长为19cm或
23cm. .
三、课堂小结:
定义:由不在同一条直线上的三条线段首尾依次连接所组成的图形不等边三角形底边和腰不等的等腰三角形按边分类等腰三角形等边三角形三边不等关系:任意一边之小于其它两边的和而大于其它两边的差边
四、课堂检测:
1.如图⑸,共有 个三角形,
其中以AC为边的三角形有 个.
2.一个等腰三角形的两边分别为7cm和10cm,那么它的周长
为 .
3.一个等腰三角形的两边分别为2cm和5cm;那么它的周长为 .
4.一个三角形的周长为15cm,且其中两边都等于第三边的2倍,,那么这个三角形的最短边长为 .
5.已经明白一个三角形的两边长分别为5cm和9cm,那么这个三角形的第三边x的取
值范围
是<x<.
六、课后作业
⒈书面作业:
⑴课本P69习题7.1“1〞〔做书上〕
⑵课本P69习题7.1“2〞〔做书上〕
⑶等腰三角形底边为4.腰长为b,那么b一定满足( )
A.b>2 B. 2<b<4 C. 2<b<8 D.b<8 ⑷已经明白三条线段的比是:①2∶3∶4;②1∶2∶3;③2∶4∶6;④3∶3∶6;⑤6∶6∶10;⑥6∶8∶10.其中可构成三角形的有 ( )
A. 1个 B. 2个 C. 3个 D. 4个 ⑸已经明白三角形的三边长为连续的整数,且周长为12cm,那么它的最短边长为
( )
A. 2cm B. 3cm C. 4cm D. 5cm ⑹已经明白a,b,c为三角形的三边,那么︱a+b―c︱-︱b-c-a︱的化简结果是
( )
A.2aB. -2b C.2a+2b D.2b-2c ⑺已经明白等腰三角形的两边长分别为4cm和6cm,且它的周长大于14cm,那么第三边长为
⑻已经明白等腰三角形的两边长分别为4,9,求它的周长.
⒉跟踪训练:
⑴如图⑹所示,为可能池塘岸边A、B的间隔,小方在池塘
的一侧选取一点O,测得OA=15cm,OB=10cm,A、B间的
间隔不可能是〔 〕
A.20cmB.15cm C.10cm D.5cm
⑵以下说法①等边三角形是等腰三角形;
②三角形任意两边的和大于第三边;
③三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;
④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.其中正确的有〔 〕
A. 1个B. 2个 C. 3个 D. 4个
⑶已经明白三角形的两边长分别为4cm和9cm,那么以下长度的四条线段中能作为第三边的是〔〕
A.13cmB.6cm C.5cm D.4cm
⑷三角形的一边长为5,一边长为13,那么第三边x的取值范围是〔 〕
A. 5<x< 13B. 8<x<18 C.x>8 D. x<18
⑸已经明白三角形三边的比是3∶4∶5,其周长为48cm,那么它的三边长为 .
⑹三角形有两边长为5和1,第三边为奇数,那么此三角形的周长为 . ⑺已经明白周长小于13的三角形三边长都是质数,且其中一条边a长为3,求符合条件的三角形的个数.
⑻一个等腰三角形的一条边长为6,另两边长是不小于3且不大于13的奇数,求这个等腰三角形的周长.
篇二:人教版八年级上11.1.1三角形的边设计
教学目的
1.认识三角形,理解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.
2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系.
3.明白得推断三条线段可否构成一个三角形的方法,并能运用它处理有关的征询题.
4.协助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣.
重点难点
重点:
1.对三角形有关概念的理解,能用符号语言表示三条形.
2.能从图中识别三角形.
3.通过度量三角形的边长的实践活动,从中理解三角形三边间的不等关系.
难点:
1.在详细的图形中不重复,且不遗漏地识别所有三角形.
2.用三角形三边不等关系断定三条线段可否组成三角形.
教学过程
一、看一看
1.教师表达: 三角形是一种最常见的几何图形之一.(看条件许可, 可以把古埃及的金字塔、飞机、飞船、分子构造的投影,给同学放映)从古埃及的金字塔到现代的飞机、上天的飞船,从宏大的建筑到微小的分子构造, 处处都有三角形的身影.结合以上的实际使学生理解到:我们所研究的“三角形〞这个课题来源于实际生活之中.
学生活动:(1)交流在日常生活中所看到的三角形.
(2)选派代表说明三角形的存在于我们的生活之中.
2.板书:在黑板上教师画出以下几个图形.
AB
DB
AA
(1)C B(2)CE
(3)C
EDAD(4)BA
(5)B
(1)教师引导学生观察上图:区别三条线段是否存在首尾顺序相接所组成的.图(1)三条线段AC、CB、AB是否首尾顺序相接.(是)
(2)观觉察察,以上的图,哪些是三角形
(3)描绘三角形的特点:
板书:“不在不断线上三条线段首尾顺次相接组成的图形叫做三角形〞.
教师提征询:上述对三角形的描绘中你认为有几个局部要引起注重.
学生答复:
a.不在不断线上的三条线段.
b.首尾顺次相接.
二、读一读
指导学生阅读课本,并答复以下征询题:
(1)什么叫三角形
(2)三角形有几条边有几个内角有几个顶点
(3)三角形ABC用符号表示________.
(4)三角形ABC的边AB、AC和BC可用小写字母分别表示为________.
三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC用符号表示为△ABC,三角形ABC的三边,AB可用边AB的所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示.
三、做一做
画出一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种道路可以选择各条道路的长一样吗
同学们在画图计算的过程中,展示议论,并指定答复以上征询题:
(1)小虫从B出发沿三角形的边爬到C有如下几条道路.
a.从B→C
b.从B→A→C
(2)从B沿边BC到C的道路长为BC的长.
从B沿边BA到A,从A沿边C到C的道路长为BA+AC.
通过测量可以说BA+ACBC,可以说这两条道路的长是不一样的.
四、议一议
1.在用一个三角形中,任意两边之和与第三边有什么关系
2.在同一个三角形中,任意两边之差与第三边有什么关系
3.三角形三边有如何样的不等关系
通过动手实验同学们可以得到哪些结论
三角形的任意两边之和大于第三边;任意两边之差小于第三边.
五、想一想
三角形按边分可以,分成几类按角分呢
(1)三角形按边分类如下:
不等三角形 三角形 底和腰不等的等腰三角形 等腰三角形
等边三角形
(2)三角形按角分类如下:
直角三角形 三角形锐角三角形 斜三角形
钝角三角形
六、练一练
有三根木棒长分别为3 cm、6 cm和2 cm,用这木棒能否围成一个三角形
分析:(1)三条