温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
电力
硕士
毕业论文
提纲
格式
范文
电力硕士毕业论文提纲格式范文
电力硕士毕业论文提纲格式范文一 2-3
ABSTRACT 3
1 绪论 7-18
1.1 本课题研究背景 7
1.2 电能质量的定义 7-8
1.3 电能质量的国家标准 8-13
1.4 电能质量评估的意义 13
1.5 选矿厂供电系统电能质量评估的意义 13
1.6 电能质量参数的评估理论及算法 13-17
1.6.1 时域分析方法 13-14
1.6.2 频域分析方法 14
1.6.3 基于数学变换分析方法 14
1.6.4 傅立叶变换 14-15
1.6.5 人工智能技术 15-17
1.7 本课题主要研究工作 17-18
2 选矿厂供电系统 18-27
2.1 选矿厂供电系统 18-24
2.1.1 磨浮 1 车间供电系统 18-20
2.1.2 磨浮 2 车间(万吨车间)供电系统 20-22
2.1.3 中细碎车间变电所供电 22-24
2.2 选矿厂供电系统电能质量实时监测 24-27
3 电能质量监测 27-37
3.1 磨浮车间用电电能质量监测分析 27-30
3.2 选矿厂存在的电能质量问题 30-36
3.2.1 万吨车间 1 30-34
3.2.2 万吨车间 2 34-36
3.3 本章小结 36-37
4 电能质量问题分析 37-50
4.1 电机起动引起的电压降 37-39
4.1.1 电动机起动引起的电压降的估算 37-39
4.2 电容器组引起电压升高 39-41
4.3 无功功率传输对电压水平的影响 41-42
4.4 系统中的主要谐波源 42-46
4.4.1 变压器产生的谐波 42-45
4.4.2 变频器产生的谐波 45-46
4.5 补偿装置 SVG 和 APF 的根本原理 46-49
4.5.1 SVG 根本原理 46-48
4.5.2 APF 根本原理 48-49
4.6 本章小结 49-50
5 对选矿厂系统仿真分析 50-62
5.1 仿真分析 50-57
5.1.1 电机起动引起的电压降落 50-53
5.1.2 补偿电容器引起的母线电压上升 53-55
5.1.3 SVG 投入无功功率 55-56
5.1.4 APF 对 400V 线路进行谐波补偿 56-57
5.2 补偿电容与 APF 仿真模型分析 57-61
5.2.1 补偿电容器引起的母线电压上升 57-58
5.2.2 APF 对 400V 线路进行谐波补偿 58-59
5.2.3 SVG 对无功功率的补偿 59-61
5.3 本章小结 61-62
6 选矿厂电能质量评估情况及建议 62-63
6.1、总结与建议 62-63
6.1.1、总结 62
6.1.2、建议 62-63
参考文献 63-65
致谢 65
电力硕士毕业论文提纲格式范文二 3-4
Abstract 4-5
第一章 绪论 8-13
1.1 微电网研究背景及意义 8-9
1.2 微电网国内外研究现状 9-11
1.2.1 容量配置 9-10
1.2.2 控制策略 10-11
1.3 论文主要研究内容 11-12
1.4 论文章节安排 12-13
第二章 风/光/储微电网电源和储能系统模型 13-19
2.1 风力发电系统 13-14
2.1.1 功率输出模型 13-14
2.1.2 仿真模型 14
2.2 光伏发电系统 14-16
2.2.1 功率输出模型 15
2.2.2 仿真模型 15-16
2.3 储能系统 16-18
2.3.1 功率输出模型 16-17
2.3.2 仿真模型 17-18
2.4 本章小结 18-19
第三章 风/光/储微电网电源容量优化配置 19-28
3.1 容量配置流程 19
3.2 容量优化配置模型 19-22
3.2.1 微电网与主网购电策略 19-21
3.2.2 可靠性模型 21
3.2.3 经济性模型 21-22
3.2.4 双目标优化模型 22
3.3 模拟退火粒子群优化算法 22-23
3.4 算例 23-26
3.4.1 根本数据 23-24
3.4.2 结果分析 24-26
3.5 本章小结 26-28
第四章 微电源逆变器控制系统模型 28-38
4.1 逆变器工作原理 28-30
4.2 逆变器控制方法 30-36
4.2.1 PQ 控制系统模型 31-33
4.2.2 VF 控制系统模型 33-35
4.2.3 分布式储能控制器模型 35-36
4.3 参数计算 36-37
4.3.1 PI 参数 36
4.3.2 LC 参数 36-37
4.4 本章小结 37-38
第五章 风/光/储微电网控制策略 38-55
5.1 DS 系统的应用 38-44
5.1.1 DS 系统控制策略 39-40
5.1.2 算例 40-44
5.2 基于 DS 和 CS 混合储能的微电网控制策略 44-47
5.2.1 微电源逆变器的 PQ 控制策略 45-46
5.2.2 CS 系统逆变器的 PQ/VF 控制策略 46-47
5.3 算例 47-54
5.3.1 参数设定 47-48
5.3.2 孤岛运行和切负荷 48-50
5.3.3 孤岛运行时电源投切 50-52
5.3.4 离网/并网运行模式转换 52
5.3.5 微电网向主网输出功率 52-54
5.4 本章小结 54-55
第六章 结论与展望 55-57
6.1 结论 55-56
6.2 展望 56-57
参考文献 57-62
致谢 62-63
攻读硕士学位期间发表的学术论文 63
攻读硕士学位期间参加的科研工程 63-64
电力硕士毕业论文提纲格式范文三 8-9
ABSTRACT 9
第一章 绪论 10-16
1.1 课题背景 10-11
1.2 在线平安稳定分析开展、应用现状 11-15
1.3 本文的主要工作 15-16
第二章 在线分析根底数据 16-31
2.1 在线数据与离线数据 16-17
2.2 在线数据的构成与构建过程 17-19
2.3 状态估计 19-24
2.3.1 状态估计功能 19-20
2.3.2 网络拓扑分析 20-21
2.3.3 量测系统分析 21
2.3.4 量测预校验 21-22
2.3.5 状态估计计算 22-23
2.3.6 不良数据检测及辨识 23-24
2.3.7 参数估计 24
2.4 在线数据整合 24-31
2.4.1 整合目标 25
2.4.2 整合难点 25-26
2.4.3 方案建立 26-27
2.4.4 根本技术 27
2.4.5 在线数据整合方案 27-31
第三章 在线平安稳定分析技术 31-53
3.1 在线静态平安分析 31-34
3.1.1 根本概念 31
3.1.2 关键参数 31
3.1.3 核心算法 31-33
3.1.4 核心指标 33-34
3.2 在线静态稳定分析 34-35
3.2.1 根本概念 34
3.2.2 关键参数 34
3.2.3 核心算法 34-35
3.2.4 核心指标 35
3.3 在线短路电流分析 35-39
3.3.1 根本概念 35
3.3.2 关键参数 35
3.3.3 核心算法 35-39
3.3.4 核心指标 39
3.4 在线小干扰分析 39-43
3.4.1 根本概念 39-40
3.4.2 关键参数 40
3.4.3 核心算法 40-42
3.4.4 核心指标 42-43
3.5 在线电压稳定分析 43-46
3.5.1 根本概念 43
3.5.2 关键参数 43-44
3.5.3 核心算法 44-45
3.5.4 核心指标 45-46
3.6 在线暂态稳定分析 46-50
3.6.1 根本概念 46
3.6.2 关键参数 46-47
3.6.3 核心算法 47-50
3.6.4 核心指标 50
3.7 在线稳定裕度评估 50-53
3.7.1 根本概念 50-51
3.7.2 关键参数 51
3.7.3 核心算法 51-52
3.7.4 核心指标 52-53
第四章 在线平安稳定分析系统 53-60
4.1 系统总体情况及架构 53-55
4.2 模块功能 55-60
4.2.1 数据整合 55
4.2.2 静态平安分析 55-56
4.2.3 暂态稳定分析 56
4.2.4 电压稳定分析 56-57
4.2.5 小扰动稳定分析 57-58
4.2.6 短路电流分析 58
4.2.7 稳定裕度评估 58-60
第五章 在线平安稳定分析应用实例 60-69
5.1 同塔双回线路掉闸应用实例 60-64
5.1.1 事故前运行方式 60-61
5.1.2 事故发生及事故处理过程 61
5.1.3 事故后分析计算及结论 61-64
5.2 500kV主变掉闸应用实例 64-69
5.2.1 事故前运行方式 64-65
5.2.2 事故发生及事故处理过程 65
5.2.3 事故后分析计算及结论 65-69
第六章 总结 69-71
6.1 总结 69-70
6.2 应用效益 70-71
参考文献 71-75
致谢 75-76
附表 76