温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
年四级
下册
数学
练习题
范文
四年级下册数学鸡兔同笼练习题
篇一:小学四年级数学鸡兔同笼练习题
小学四年级数学奥数练习题(八)鸡兔同笼征询题
第九节鸡兔同笼征询题
根本公式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)
鸡兔同笼征询题例题透析
1
1、有假设干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?
解:我们设想,每只鸡都是“金鸡独立〞,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.如今,地面上出现脚的总数的一半,也确实是244÷2=122(只).在122这个数里,鸡的头数罢了一次,兔子的头数相当于罢了两次.因而从122减去总头数88,剩下确实实是兔子头数122-88=34,有34只兔子.因而鸡就有54只.
答:有兔子34只,鸡54只.
上面的计算,能够归结为下面算式:总脚数÷2-总头数=兔子数. 上面的解法是孙子算经中记载的.做一次除法和一次减法,立即能求出兔子数,多简单!能够如此算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.但是,当其他征询题转化成这类征询题时,“脚数〞就不一定是4和2,上面的计算方法就行不通.因而,我们对这类征询题给出一种一般解法.还说此题.
假设设想88只都是兔子,那么就有4×88只脚,比244只脚多了 88×4-244=108(只).每只鸡比兔子少(4-2)只脚,因而共有鸡(88×4-244)÷(4-2)= 54(只).说明我们设想的88只“兔子〞中,有54只不是兔子.而是鸡.因而能够列出公式鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).
因而,我们也能够设想88只都是“鸡〞,那么共有脚2×88=176(只),比244只脚少了244-176=68(只).每只鸡比每只兔子少(4-2)只脚,68÷2=34(只).说明设想中的“鸡〞,有34只是兔子,也能够列出公式兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).
上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头
数去减,就明白另一个数.假设全是鸡,或者全是兔,通常用如此的思路求解,有人称为“假设法〞.
鸡兔同笼征询题例题透析
2
红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.征询红、蓝铅笔各买几支?
解:以“分〞作为钱的单位.我们设想,一种“鸡〞有11只脚,一种“兔子〞有19只脚,它们共有16个头,280只脚.
如今已经把买铅笔征询题,转化成“鸡兔同笼〞征询题了.利用上面算兔数公式,就有蓝笔数=(19×16-280)÷(19-11)=24÷8=3(支).红笔数=16-3=13(支). 答:买了13支红铅笔和3支蓝铅笔.
关于这类征询题的计算,常常能够利用已经明白脚数的特别性.例2中的“脚数〞19与11之和是30.我们也能够设想16只中,8只是“兔子〞,8只是“鸡〞,按照这一设想,脚数是8×(11+19)=240.比280少40.40÷(19-11)=5.就明白设想中的8只“鸡〞应少5只,也确实是“鸡〞(蓝铅笔)数是3。30×8比19×16或11×16要容易计算些.利用已经明白数的特别性,靠心算来完成计算.
实际上,能够任意设想一个方便的兔数或鸡数.例如,设想16只中,“兔数〞为10,“鸡数〞为6,就有脚数19×10+11×6=256.比280少24.24÷(19-11)=3,就明白设想6只“鸡〞,要少3只. 要使设想的数,能给计算带来方便,常常取决于你的心算本领.
鸡兔同笼征询题例题透析
3
一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,如今甲单独打假设干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?
解:我们把这份稿件平均分成30份(30是6和10的最小公倍数),甲每小时打30÷6=5(份),乙每小时打30÷10=3(份).
如今把甲打字的时间看成“兔〞头数,乙打字的时间看成
“鸡〞头数,总头数是7.“兔〞的脚数是5,“鸡〞的脚数是3,总脚数是30,就把征询题转化成“鸡兔同笼〞征询题了.按照前面的公式 “兔〞数=(30-3×7)÷(5-3)=4.5,“鸡〞数=7-4.5=2.5,也确实是甲打字用了4.5小时,乙打字用了2.5小时.
答:甲打字用了4小时30分.
鸡兔同笼征询题例题透析4
今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2022年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?
解:4年后,两人年龄和都要加8.如今兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们能够把兄的年龄看作“鸡〞头数,弟的年龄看作“兔〞头数.25是“总头数〞.86是“总脚数〞.按照公式,兄的年龄是(25×4-86)÷(4-3)=14(岁).1998年,兄年龄是14-4=10(岁).父年龄是(25-14)×4-4=40(岁).因而,当父的年龄是兄的年龄的3倍时,兄的年龄是(40-10)÷(3-1)=15(岁).这是2022年.
答:公元2022年时,父年龄是兄年龄的3倍.
鸡兔同笼征询题例题透析5
蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.如今这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只? 解:由于蜻蜓和蝉都有6条腿,因而从腿的数目来考虑,能够把小虫分成“8条腿〞与“6条腿〞两种.利用公式就能够算出8条腿的 蜘蛛数=(118-6×18)÷(8-6)=5(只).因而就明白6条腿的小虫共18-5=13(只).也确实是蜻蜓和蝉共有13只,它们共有20对翅膀.再利用一次公式蝉数=(13×2-20)÷(2-1)=6(只).因而蜻蜓数是13-6=7(只). 答:有5只蜘蛛,7只蜻蜓,6只蝉.
鸡兔同笼征询题例题透析6
某次数学考五道题,全班52人参加,共做对181道题,已经明白每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数一样多,那么做对4道的人数有多少人? 解:对2道、3道、4道题的人共有52-7-6=39(人).他们共做对 181-1×7-5×6=144(道).由于对2道和3道题的人数一样多,我们就能够把他们看作是对2.5道题的人((2+3)÷2=2.5).如此兔脚数=4,鸡脚数=2.5,总脚数=144,总头数=39.对4道题的有(144-2.5×39)÷(4-1.5)=31(人).
答:做对4道题的有31人.
鸡兔同笼练习题
1.鸡兔共100只,共有脚280只,鸡兔各有多少只?
2.在一棵松树上有百灵鸟和松鼠共15只,总共有48条腿,百灵鸟和松鼠各有多少只?
3.56个学生去划船,共乘坐10只船恰好坐满,其中大船坐6人,小船坐4人,大船和小船各几只?
4.一辆卡车运矿石,晴天每天可运16次,雨天每天只能运11次,它一连运了17天,共运了222次,征询这些天中有多少天下雨?
5.某食堂买来的面粉是米的5倍,假设每天吃30千克米,75千克面粉,几天后米吃完了,而面粉还剩下225千克,这个食堂买来的米和面粉各多少千克?
6.鸡和兔放在一只笼子里,共有29个头和92只脚,那么笼中有多少只兔?
7.15元钱买50分邮票和20分邮票共63张,那么20分邮票与50分邮票相差多少张?
8.人民路小学的老师和学生共100人去植树,老师每人栽3棵树,学生平均每3个人栽1棵,一共栽100棵。那么,有多少名学生参加植树?
9.张三买了两种戏票一共30张,付出200元,找回5元。甲种票每张7元,乙种票每张6元。张三买了多少张甲种票?
10.杨帆每学期的21次测验成绩全是4分或5分(老师采纳5分评分制)。总共加起来是100分。他得了多少次5分?
11.给货主运2022箱玻璃。合同规定,完好运到一箱给运费5元,损坏一箱不给运费,还要赔给货主40元。将这批玻璃运到后收到运货款9190元,损坏了多少箱?
12.20分和50分的邮票共36枚,共值9元9角,那么两种邮票分别有多少枚?
13.有一堆土方共400方,有大小两辆汽车,大车一次拉了7方,小车一次拉4方,运完这堆土共拉了70车。那么大车拉了多少次?
14.电视机厂每天消费电视机500台,在质量评比中,每消费一台合格电视机记5分,每消费一台不合格电视机扣18分。假设四天得了9931分,那么这四天消费了多少台合格电视机?
15.松鼠妈妈采松子,晴天每天可采20个,雨天每天可采12个,它一连几天采了112个松子,平均每天采14个,那么这几天当中共有几个雨天?
16.有大小拖拉机共30台,今天一共耕地112公顷,大拖拉机每天耕地5公顷,小拖拉机每天耕地3公顷,大小拖拉机各有几台?
17.现有大小塑料桶共50个,每个大桶可装果汁4千克,每个小桶可装果汁2千克,大桶和小桶共装果汁120千克。征询大小塑料桶各有多少个?
18.某运发动进展射击考核,共打20发子弹。规定每中一发记20分,脱靶一发扣12分,最后这名运发动共得240分。征询这名运发动共打中几发?
19.某校在组织篮、排球联赛之前一次拿出720元人民币,预备购置一些竞赛用球。已经明白一个篮球比一个排球要贵20元,6个篮球和8个排球的价格相等。请你算一算,假设用这些钱都买篮球能买多少个?假设都买排球能买多少个?
20.蜘蛛有8条腿,蜻蜒有6条腿和2对翅膀,蝉有6条腿和一对翅膀。现有这三种小虫16只,共有110条腿和14对翅膀。征询:每种小虫各几只?
21.搬运1000只玻璃瓶,规定平安运到1只可得搬运费3角,但打碎1只,不但不给搬运费,还要赔5角。假设运完后共得运费260元,那么,搬运中打碎了几只玻璃瓶?
22、一辆卡车装运玻璃仪器360个,每个运费5元,假设损坏一个仪器不但不给运费,还要赔50元,结果司机只收到运费1250元,征询损坏了几个仪器?
篇二:小学数学四年级下册第九单元测(鸡兔同笼)
第九单元 数学广角——鸡兔同笼
1、今有鸡兔共居一笼,已经明白鸡头与兔头共35个,鸡脚与兔脚共94只,征询鸡兔各几只?
2、有龟、鹤共20只,脚44只,龟、鹤各几只?
3、某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.征询:小华做对几道题?
4、12张乒乓球台上共有34人在打球,征询:正在进展单打和双打的台子各有几张?
5、刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,征询大船、小船各租几条?
6、小红的储钱罐里有面值2元和5元的人民币共65张,总钱数为205元,两种面值的人民币各多少张?
7、动物园豢养的食肉动物分大型动物和小型动物两类,规定老虎、
狮子一类的大动物每次喂肉每头三斤,狐狸、山猫一类小动物每三头喂一斤.该动物园共有这两类动物100头,每次需喂肉100斤,征询大、小动物各多少?
8、某电视机厂每天消费电视500台,在质量评比中,每消费一台合格电视机记5分,每消费一台不合格电视机扣18分.假设四天得了9931分,那么这四天消费了多少台合格电视机?
9、自行车越野赛全程 220千米,全程被分为 20个路段,其中一局部路段长14千米,其余的长9千米.征询:长9千米的路段有多少个?
10、100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。征询:大、小和尚各有多少人?
篇三:四年级下册鸡兔同笼征询题练习题(附及解析)
鸡兔同笼征询题练习题
1. 某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.征询:小华做对几道题? 假设全做对:
20×5=100(分)
100-64=36(分)
36÷(5+1)=6(道)·错题
20-6=14(道)·对题
2. 鸡、兔共有脚100只,假设将鸡换成兔,兔换成鸡,那么共有脚86只.征询:鸡、兔各有几只?
100-86=14(条)
14÷2=7(