福利年免费资源www.fulinian.com
2011
考研
数学
三真题
答案
福利
免费资源
www
fulinian
com
数学(三)试题 第 1 页(共 15 页)2011 年全国硕士研究生入学统一考试数学三试题答案 一、选择题(18 小题,每小题 4 分,共 32 分下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸一、选择题(18 小题,每小题 4 分,共 32 分下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上)指定位置上)(1)【答案】(C)【解析】因为03sinsin3limkxxxcx03sinsin cos2cos sin2limkxxxxxxcx 20sin3cos22coslimkxxxxcx2103cos22coslimkxxxcx 221032cos12coslimkxxxcx22110044cos4sinlimlimkkxxxxcxcx 304lim1kxcx 所以4,3ck,故答案选(C).(2)【答案】(B)【解析】23302limxx fxfxx 223300220limxx fxx ffxfx 33000lim2xfxffxfxx 0200fff 故答案选(B).(3)【答案】(A).【解析】方法 1:数项级数的性质:收敛级数任意添加括号后仍收敛,故(A)正确.方法 2:排除法,举反例 选项(B)取(1)nnu ,这时21211()0nnnnuu收敛,但11(1)nnnnu发散,故选项(B)错误;选项(C)取1(1)nnun,这时111(1)nnnnun收敛,但212111()nnnnuun发散,故选项(C)错误;2020考研群:715795911分享 数学(三)试题 第 2 页(共 15 页)选项(D)取1nu,这时21211()0nnnnuu收敛,但111nnnu发散,故选项(D)错误 故正确答案为(A).(4)【答案】(B)【解析】因为04x时,0sincos1cotxxx,又因ln x是单调递增的函数,所以lnsinlncoslncotxxx 故正确答案为(B)(5)【答案】(D)【解析】由于将A的第 2 列加到第 1 列得矩阵B,故 100110001AB,即1APB,11ABP 由于交换B的第 2 行和第 3 行得单位矩阵,故 100001010BE,即2,PBE故122BPP因此,12 1APP,故选(D)(6)【答案】(C)【解析】由于123,是Ax的 3 个线性无关的解,所以3121,是0Ax 的两个线性无关的解,即0Ax 的基础解系中至少有 2 个线性无关的解,所以可排除(A)、(B)选项 又因为2302A,所以232是0Ax 的解,不是Ax的解,故排除(D)选项,因此选(C)事实上,由于123,是Ax的三个线性无关的解,所以2131,是0Ax 的两个线性无关的解,即0Ax 的基础解系中至少有 2 个线性无关的解,亦即3()2r A,故()1r A 由于AO,所以()1r A,故()1r A 这样,0Ax 的基础解系中正好有 2 个线性无关的解,由此知2131,是0Ax 的一个基础解系 因为123,是Ax的解,所以23,AA,因此232A,所以2322020考研群:715795911分享大型考试资源分享网站百度搜索:华宇课件网 http:/www.china--更多热门考试学习资源免费下载-出售:公考、考研、会计、建筑、教师等考试课程-课程咨询微信QQ同号:582622214 数学(三)试题 第 3 页(共 15 页)是Ax的一个特解 由非齐次线性方程组解的结构,可知Ax的通解为 23121231()()2kk(7)【答案】(D)【解析】选项(D)1122()()()()f x F xfx F x dx2211()()()()F x dF xF x dF x 21()()d F x F x12()()|F x F x1 所以1221()()f F xf F x为概率密度.(8)【答案】(D)【解析】因为12,()nX XXP,所以()iE X,()iD X,从而有 1111()11()nniiiiXEXE TnnnnEE XE X 112111111()()11nnininiiE TEXXEXE Xnnnn 111E XE Xnn 因为11 1n,所以12E TE T 又因为 1121(11)niiD TDn D XD XnnXnn 11221121111()()1(1)()nnininiiXXDXDnnDnDXnT 2211(111)()1D XD Xnnnn 由于当2n时,21111nnn,所以12D TD T 2020考研群:715795911分享 数学(三)试题 第 4 页(共 15 页)二、填空题(914 小题,每小题 4 分,共 24 分,请将答案写在答题纸二、填空题(914 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上)指定位置上)(9)【答案】31 3xex.【解析】因为 31300lim1 3lim1 3xtxtttttfxxtxt3xx e,所以,31 3xfxex.(10)【答案】1 2ln2dxdy.【解析】ln(1)(1)xxxyyyxzey,11(1)ln(1)1xydzxxxyxdxyyyyy,22(1)ln(1)1xyxdzxxxxyxdyyyyyy,所以,(1,1)2ln2 1dzdx,(1,1)1 2ln2dzdx ,从而 1,11 2ln21 2ln2dzdxdy或1,11 2ln2dzdxdy.(11)【答案】2yx.【解析】方程tan4yxye的两端对x求导,有 2sec14yxyye y,将0,0 xy代入上式,有211cos4yy,解得0,02y,故切线方程为:2yx.(12)【答案】43.【解析】如图所示:221Vy dx x y 21yx 2020考研群:715795911分享大型考试资源分享网站百度搜索:华宇课件网 http:/www.china--更多热门考试学习资源免费下载-出售:公考、考研、会计、建筑、教师等考试课程-课程咨询微信QQ同号:582622214 数学(三)试题 第 5 页(共 15 页)2211xdx 43 图(13)【答案】213y【解析】因为A的各行元素之和为 3,所以1113 111A ,故 3 为矩阵A的特征值 由()1r A 知矩阵A有两个特征值为零,从而1233,0 由于二次型在正交变换下标准形前面的系数即为二次型所对应矩阵的特征值,所以二次型在正交变换下的标准形为213y(14)【答案】22 【解析】根据题意,二维随机变量,X Y服从22,;,;0N 因为0 xy,所以由二维正态分布的性质知随机变量,X Y独立,所以2,X Y从而有 22222E XYE X E YD YEY 三、解答题(1523 小题,共 94 分请将解答写在答题纸三、解答题(1523 小题,共 94 分请将解答写在答题纸指定位置上,解答应写出文字说明、证明过程或演算步骤)指定位置上,解答应写出文字说明、证明过程或演算步骤)(15)(本题满分 10 分)【解析】2001 2sin11 2sin1limlimln 1xxxxxxxxx 012cos12 1 2sinlim2xxxx 0cos1 2sinlim21 2sinxxxxx 2020考研群:715795911分享 数学(三)试题 第 6 页(共 15 页)000cos12sinlim2cossin12sinlim2coslim2 12sin1.2xxxxxxxxxxx (16)(本题满分 10 分)【解析】121(),(,)(),(,)(,)zfxyf x yfxyf x yf x yx 211122212221212,1,(,),(,)(,),zfxyfxyx yfxyfxyf x yfxyfxyfxyfxyf x yf x yfxyfxyfx y 由于1,12f为,f u v的极值,故121,11,10ff,所以,2112122,22,21,1.zfffx y (17)(本题满分 10 分)【解析】令tx,则2xt,2dxtdt,所以 arcsinlnxxdxx2arcsinln2tttdtt22arcsinlntt dt 22222 arcsin22 ln21ttttdttttdttt 222(1)2 arcsin2 ln41dttttttt 222 arcsin2 12 ln4ttttttC 2arcsin2ln2 14.xxxxxxC 2020考研群:715795911分享大型考试资源分享网站百度搜索:华宇课件网 http:/www.china--更多热门考试学习资源免费下载-出售:公考、考研、会计、建筑、教师等考试课程-课程咨询微信QQ同号:582622214 数学(三)试题 第 7 页(共 15 页)(18)(本题满分 10 分)【解析】设4()4arctan33f xxx,则 224(3)(3)()111xxfxxx,令()0fx,解得驻点123,3xx.所以,当3x 时,()0fx,故()f x单调递减;当33x时,()0fx,故()f x单调递增;当3x 时,()0fx,故()f x单调递减.又当(,3)(3,3)x 时()0f x,且(3)0f,故(,3)x 时只有一个零点;又8(3)2 303f,4limlim 4arctan303xxf xxx ,由零点定理可知,存在03,x,使00f x;所以,方程44arctan303xx恰有两实根.(19)(本题满分 10 分)【解析】21()()2tDf t dxdyt f t,0000()()()()()()ttt xDttfxy dxdydxfxy dyf tf x dxtf tf x dx 由题设有 201()()()2ttf tf x dxt f t,上式两端求导,整理得(2)()2()t f tf t,为变量可分离微分方程,解得2()(2)Cf tt,2020考研群:715795911分享 数学(三)试题 第 8 页(共 15 页)带入(0)1f,得4C.所以,24(),01(2)f xxx.(20)(本题满分 11 分)【解析】(I)由于123,不能由123,线性表示,对123123(,)进行初等行变换:123123113101(,)12401313115a 113101011112023014a113101011112005210a 当5a 时,1231231(,)2(,)3rr ,此时,1不能由123,线性表示,故123,不能由123,线性表示(II)对123123(,)进行初等行变换:123123101113(,)013 124115 135 101113013124014022101113013124001102 1002150104210001102,故112324,2122,31235102 (21)(本题满分 11 分)【解析】(I)由于111100001111A,设121,0,1,1,0,1TT,则 2020考研群:715795911分享大型考试资源分享网站百度搜索:华宇课件网 http:/www.china--更多热门考试学习资源免费下载-出售:公考、考研、会计、建筑、教师等考试课程-课程咨询微信QQ同号:582622214 数学(三)试题 第 9 页(共 15 页)1212,A ,即1122,AA,而120,0,知A的特征值为121,1,对应的特征向量分别为1110kk,2220kk 由于 2r A,故0A,所以30 由于A是三阶实对称矩阵,故不同特征值对应的特征向量相互正交,设30对应的特征向量为3123,Tx x x,则 13230,0,TT 即13130,0 xxxx 解此方程组,得30,1,0T,故30对应的特征向量为3330kk(II)由于不同特征值对应的特征向量已经正交,只需单位化:312123123111,0,1,1,0,1,0,1,022TTT 令123,Q ,则110TQ AQ ,TAQ Q 22022220122220011022022010022 22022220001222200000002210022010022 2020考研群:715795911分享 数学(三)试题 第 10 页(共 15 页)(22)(本题满分 11 分)【解析】(I)因为221P XY,所以222210 P XYP XY 即 0,10,11,00P XYP XYP XY 利用边缘概率和联合概率的关系得到 10,000,10,13P XYP XP XYP XY;11,110,13P XYP YP XY ;11,110,13P XYP YP XY 即,X Y的概率分布为 (II)Z的所有可能取值为1,0,1 111,13P ZP XY 111,13P ZP XY 101113P ZP ZP Z ZXY的概率分布为 (III)因为()()()()XYCov XYE XYE XE YD XD YD XD Y,其中 1111010333E XYE Z ,1111010333E Y 所以 0E XYE XE Y,即X,Y的相关系数0XY Z-1 0 1 P 1/3 1/3 1/3 X Y-1 0 1 0 1/3 0 1 0 1/3 0 1/3 2020考研群:715795911分享大型考试资源分享网站百度搜索:华宇课件网 http:/www.china--更多热门考试学习资源免费下载-出售:公考、考研、会计、建筑、教师等考试课程-课程咨询微信QQ同号:582622214 数学(三)试题 第 11 页(共 15 页)(23)(本题满分 11 分)【解析】二维连续型随机变量(,)X Y的概率密度为1,01,2,(,)0,.yyxyf x y其它()当01x时,0()(,)1xXfxf x y dydyx 当12x时,20()(,)12xXfxf x y dydyx X的边缘概率密度为,01,()2,12,0,Xxxfxxx其它.(II)当01y时,Y的边缘概率密度为2()(,)122yYyfyf x y dxdxy 当01y时,|(|)X Yfx y有意义,条件概率密度|1,2,(,)22(|)()0,X YYyxyf x yyfx yfy其它.2020考研群:715795911分享