2022考研数学满分过关1501第一章函数极限连续重点题型一函数的性态【例1.1】设()fx为以T为周期的连续函数,则下列结论正确的个数是【】①0()xftdt∫以T为周期②00()()xTxftdtftdtT−∫∫以T为周期③若()fx为奇函数,则0()xftdt∫以T为周期④[]0()()xftftdt−−∫以T为周期⑤若0()fxdx+∞∫收敛,则0()xftdt∫以T为周期(A)1(B)2(C)3(D)4【详解】2022考研数学满分过关1502重要题型二函数极限的计算【例1.2】设()fx为x的三次多项式,且2()lim12xafxxa→=−,4()lim1(0)4xafxaxa→=≠−,则3()lim3xafxxa→=−__________.【详解】【例1.3】设()yyx=为微分方程2(1)xyxyxye′′′+++=满足初始条件(0)0y=,(0)1y′=的特解.若0()lim(0)kxyxxccx→−=≠,则c=__________,k=__________.【详解】【例1.4】设()fx在0x=处三阶可导,且(0)(0)(0)0fff′′′===,(0)0f′′′≠,则000()lim()xxxtfxtdtxfxtdt→−=−∫∫__________.【详解】2022考研数学满分过关1503【例1.5】(莫斯科1976年竞赛题)设1()(1)xfxx=+,当0x+→时,22()()fxeAxBxox=+++,则A=__________,B=__________.【详解】【例1.6】(I)设(),()fxgx连续,且0()lim1()xfxgx→=,0lim()0xxxϕ→=.证明:当0xx→时,()()00()()xxftdtgtdtϕϕ∫∫;(II)求极限20200ln(12tan)limln(12tan)xxxtdttdt→++∫∫;(III)设()fx连续,且0()lim1xfxx→=,求极限2020()()lim(tanarcsin)sinxxtxfxeftdtxxx−→−∫.【详解】(I)0()00()0000()()()()limlimlim1()()()xuxuxxuuftdtftdtxufugugtdtgtdtϕϕϕ→→→===∫∫∫∫故当0xx→时,()()00()()xxftdtgtdtϕϕ∫∫.(II)()2240022400000ln(12tan)2limlimlim12ln(12tan)xxxxxxxtdttdtxxtdttdt→→→+===+∫∫∫∫(III)由333tanarcsintanarcsin366xxxxxxxxx−=−+−−=得()4222200052440000()()()()34limlim6lim6lim(tanarcsin)sin26xxxxtxtxxxxxfxeftdtfxeeftdttdtxxxxxx−−→→→→====−∫∫∫2022考研数学满分过关1504【1999,数二】设50sin()xtxdttα=∫,1sin0()(1)xtxtdtβ=+∫,则当0x→时,()xα为()xβ的(A)高阶无穷小(B)低阶无穷小(C)同阶但不等价无穷小(D)等价无穷小【2016,数一】020ln(1sin)lim1cosxxtttdtx→+=−∫__________.【2020,数一、数二】当0x+→时,下列无穷小中最高阶的是(A)20(1)xtedt−∫(B)30ln(1)xtdt+∫(C)sin20sinxtdt∫...