2022考研数学全程班同步作业——《高分强化521》新浪微博@考研数学周洋鑫12022考研数学全程班作业答案——《高分强化521》17第6章多元函数微分学6.1基本概念考题【137】已知(),zfxy=在()0,0的某领域内有定义,且()0,00f=,()()22(,)0,0,lim2022xyfxyxy→=+,则(),zfxy=在()0,0处().(A)连续但偏导数不存在.(B)偏导数存在但不可微.(C)偏导数存在且可微.(D)无法判定.解:由题意可知:()()()(,)0,0lim,0,00xyfxyf→==且()20,0lim2022xfxx→=,故()()()()200,00,0,00,0limlim0xxxfxffxfxxx→→−===根据对称性,同理可知()0,00yf=.又因为()()()()()()0,0222222(,)0,0(,)0,0,0,0,limlim=0xyxyfxyfdzfxyxyxyxy→→−−=+++因此,(),zfxy=在()0,0处可微,选(C).【138】设()3,fxyxy=,则该函数在()0,0处.(A)连续,但偏导数不存在(B)不连续,但偏导数存在(C)偏导数存在,但不可微(D)偏导数存在,且可微解:()()30000lim,lim00,0xxyyfxyxyf→→→→===,则函数在()0,0处连续;且()()()00,00,0000,0limlim00xxxfxffxx→→−−===−,同理()0,00yf=,则函数在()0,0处偏导数存在;又因为()()()30,022220000,0,0limlimxxyyfxyfdzxyxyxy→→→→−−=++一笑而过考研数学2022考研数学全程班同步作业——《高分强化521》新浪微博@考研数学周洋鑫2当取()20,0yx=→时,32400limlim=xxxyxxxy→→=+不存在,因此,函数在()0,0处不可微.【139】设()()222222221sin,0,0,0xyxyxyfxyxy+++=+=,求()(),,,xyfxyfxy,并讨论这些偏导数在()0,0处连续性,以及可微性.解析:(1)求()(),,,xyfxyfxy.当()(),0,0xy时,()()()222222222112,2sin+cosxxfxyxxyxyxyxy−=++++2222221212sincosxxxyxyxy=−+++,当()(),0,0xy时,()()()22001sin,00,00,0limlim00xxxxfxfxfxx→→−===−,故()()()()()2222221212sincos,,0,0,0,,0,0xxxxyxyxyxyfxyxy−+++==,同理()()()()()2222221212sincos,,0,0,0,,0,0yyyxyxyxyxyfxyxy−+++==.(2)判断()(),,,xyfxyfxy在()0,0处的连续性.()2222220000121lim,lim2sincosxxxxxxfxyxxyxyxy→→→→=−+++其中,当()(),0,0xy→时,2212sin0xxy→+,而222221cosxxyxy++不存在,因此,()00lim,xxxfxy→→不存在,故不连续.同理,(),yfxy在()0,0处也不连续.(3)判断(),fxy在()0,0处的可微性.()()()2222222222220000001sin,0,01limlimlimsin0xxxxxxxyfxyfd...