2022考研数学全程班同步作业——《高分强化521》新浪微博@考研数学周洋鑫12022考研数学全程班作业答案——《高分强化521》12第3章一元函数积分学3.2定积分定义与性质【86】设函数()fx在区间0,1上连续,则10()fxdx=().(A)1211lim22nnkkfnn→=−(B)1211lim2nnkkfnn→=−(C)2111lim2nnkkfnn→=−(D)212lim2nnkkfnn→=解析:根据定积分定义,选(B).【87】设40ln(sin)dIxx=,40ln(cot)dJxx=,40ln(cos)dKxx=,则,,IJK的大小关系是(A)IJK.(B)IKJ.(C)JIK.(D)KJI.解析:当π04x时,有0sincos1cotxxx,所以lnsinlncoslncotxxx,应选(B).【88】设()()sin0sin,xtfxetkdt=−若积分()2aafxdx+的值与a无关,则k=.(A)2sin0sinxexdx(B)2sin01sin2xexdx(C)sin0sinxexdx(D)0解析:由题意可知,()fx是以2为周期的周期函数,则(2)()fxfx+=.即()()2sinsin00sinsinxxttetkdtetkdt+−=−令0x=,可得()2sin0sin0tetkdt−=则()()22sinsin001sin20sin2ttetdtkketdt−==,故选(B).【89】计算定积分()2222322arcsinsin11xxxdxxx−+−−=.一笑而过考研数学2022考研数学全程班同步作业——《高分强化521》新浪微博@考研数学周洋鑫2解析:()22sin22422320022arcsinsinarcsinsin22coscos111xtxxxxxttdxdxtdttxxx=−+==−−−令402sin214ttdt==−.【90】计算2sinarctan1cosxxxeIdxx−==+.解析:0220sinarctansinarctan1cos1cosxxxxexxeIdxdxxx−=+++,第一个部分令xt=−,2200sinarctansinarctan1cos1costxttexxedtdxtx−=+++2200sinarctansinarctan1cos1cosxxxxexxedtdxxx−=+++()20sinarctanarctan1cosxxxxeedtx−=++令()arctanarctanxxfxee−=+,且()0fx=,则()arctanarctanxxfxeeC−=+=,又因为()02f=,故()arctanarctan2xxfxee−=+=,因此,32200sinsin21cos221cos8xxxIdtdtxx=++==.3.3定积分计算【91】计算定积分4204d=xxxx−.解析:原式=4222220222(2)d(2)2dtxxxxttt令−=−−−+−222222222π2d22d224π.2ttttt−−=−+−==【92】10nlimesindxnxx−→=.解析:设10esindxnInxx−=,因为111000sindee...