1为非零矩阵,,为的代数余子式,则=_______解:若题中出现则则或又因为为非零矩阵,不妨设,则…,故排除,因此.故本题由,,2若,已知,则=_________解:由,两边取逆,得,其中,=,得又因为,求用定义法,因,即33A2ijijAaijAAATijijAaAA1nTAAAAA0A1AA0ija11iiAaAijijaA00A1A2ijijAa22TTAAAA31328TAAA28AA8A0021100121001123100053000A0AA1AAA11()AAA1()AAA(1)mnABC211121112B3153C51444AA20A1110000BCCB1311534C1B211111100121111010112111001BDE23DD2211()3()540(5)4BEBEBBEBEB3①若都是正交阵,且,则②若是正交阵,且,则不可逆,即③若都是正交阵,且,则4已知有无穷多解,,则该方程线性无关解向量的个数最多应有()(A)个(B)个(C)个(D)个5设是四元非齐次线性方程组的三个解向量,且,若,,则方程组的通解为____________________解:,故方程组通解形式为,故通解为,为任意常数6,,则的通解为_____________,AB1AB()1rABAAAE0AE,AB0AB0ABmnAXb()rArnnrr1nr1r123,,xxxAXb()3rA1(1,1,1,1)Tx23(2,3,4,5)Txx()431nrAk231(2)0Axxx1Axb(0,1,2,3)(1,1,1,1)TTkk14335741Aaa()2rA0AX7下列矩阵中不可对角化的矩阵是()(A)(B)(C)(D)8若无关,,,,则______解:,即的特征值为故9设两个阶矩阵,满足,则解:,,即令,则,得10若为阶矩阵,且,,则解:123204345123004005123246369123014001123,,10A2122A31233AAE123123021013001A000210131AA0,1,11200AE,ABn1ABAB()()rEABrEABn1ABABABABE2()ABEABC2CE()()rCErCEn,ABn()rAEp()rBEq()rABEpq()()()()()()()rABErABEAErABE...