1线性代数第一章行列式1.1【答案】(1)我有幸-生有你;(2)()()121!nnn−−.1.2【答案】D【解析】11131112111311121113122123212221232122212322313331323133313231333233333aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa+++=+=++.1.3证:左式.1.4【答案】(1)24;(2).【解析】(1)等于用1,3,2,2−替换的第行对应元素所得行列式,即433221cccccc−−−2222212325212325212325212325aaaabbbbccccdddd++++++++++++4332cccc−−222221222122021222122aabbccdd++=++!n31323334322AAAA+−+D3313233344331123111513451313221322132015331530AAAAcc−−−−−−+−+=+−−−−−2(2)利用行列式展开定理,求出中各行或各列元素的代数余子式之和,即求出,或,1,2,,jn=,然后再相加,求出.,,......,即时,时,213111222013201530rr−−+−−()242rc−按展开1112132153−−−−2131rrrr−−1112041044−−−−32111204124.003rr−−+−=A1nijjA=1,2,,in=1nijiA=11nnijijA==111111102222!003330000njjAnn===2111111111110003330000njjAn===1111110222200033311111nnjjA===1i=1!nijjAn==1i10nijjA==3故.1.5解:(1)(2)(3)()()222200000000000000000000abcdmnmnmnabcdnmnmnmabcddcbadcbadcbamnmnnmnmabdcadbcdcabdacbmnbcmnbcnmcb=−==−===−−111121!0!nnnnnijjijijjijAAAnn======+=+=1234111123412341==10=103412341241234123=10=10=160.D−−−−−−−−−−−−()()()()()222222222111.bcacababcabcabcDabcabcabcabcabcabcabcabccacbba+++++++++===++=++−−−41.6解:(1)展开定理,求解三角行列式时要注意为副对角行列式,符号问题.原式.(2)按照第一列进行展开,得到两个对角行列式()()110000000=110000000nnnnbaabababababba+++−=+−原式.(3)爪形行列式进行三角化,注意求解行列式时符号问题.原式(4)转化为爪形行列式,之后三角化.原式.1.7【答案】B【解析】转化为范德蒙德行列式原式,这是因为,()()121nn−−()()2009200912000100202010201012009!2010!2009000−==−=()()0112011211111111nnnnniiininnaaaaaaaaa+==−−−−−==−−()1000000000000000abbbanbbbbbaababbaababbaabab+−−−−==−−−−−−()()11nanbab−=+−−()()()1212xx=−−−−−()()()21111=1212...