第一章行列式综合测试1.设2123211013xfxxxx,则2x的系数为________.2.设123,,,,为4维列向量,123,,,2Aαγγγ,123,,,93Bγγγ,求A+B.3.设113,,是三维线性无关的向量,A是三阶矩阵,且1122A,2234A,31232A,求A.4.设2512371459274612D,其中ijM是D中元素ija的余子式,则求21222324MMMM.5.设A为n阶矩阵,0aA的每行元素之和为b,则11211nAAA________.6.设12,为二维列向量,设12,A且4A,令12122,3B,则B________.7.5100011000110001100011aaaaDaaaaa________.8.计算0001000000001nababababDababab.9.设3阶矩阵,AB,满足2ABABE,其中101020201A=,求B.10.计算下列行列式:000000000000nabbaDbaba________.11.计算行列式:(1)1234000000axaaaxxDxxxx________.(2)4阶行列式1234100100100aaxDaxax________.(3)1111111111111111xxDxx________.12.设A是3阶可逆矩阵,1A的特征值为3,2,1,则A的代数余子式112233++AAA(A)16(B)13(C)12(D)1拓展提升1.设111213212223313233aaaaaaaaaA且210,a又2(,1,2,3)ijijAaij,则||A(A)2(B)4(C)6(D)82.(660)设100||020003A,ijA为(,)ij位置元素的代数余子式,则3,1ijijA________.3.已知A有0特征值,01111012002aaaabAB,且111220aaab,则011112aaa________.4.1221100001000001nnnnbbDbaaaaba________.5.(150)设12312,,,,均为四维列向量,1231(,,,)A,3122(,,,)B.若||1A,||2B,则|2|AB________.6.设123,,A,123,,为线性无关的3维列向量,P为3阶矩阵,123,2,3PA,则PE(A)6(B)6(C)24(D)247.已知3阶行列式||9A,其第2行元素为[1,1,2],第3行元素为[2,2,1],则3132333AAA________.8.设,AB为三阶矩阵,且~AB,121,2为A的两个特征值,||2B,求1*()(2)AEOOB.9.设A为3阶非零实矩阵,且T*kAA(k为非零常数).(1)证明:A是可逆矩阵;(2)求行列式1*1|||()|.AA