02221.()sin,lim().hfhffxxxh设则2.2()(e1)(e2)(e),(0)().xxnxfxnnfZ设则,.3(),(ln),.()yfxyfxy设函数二阶可导若则0(3)(2)4.(0)2,lim.sinxfxfxfx设则sin()(0),()________.5.xfxxxfx设则()126.()ln,(0)________.13nxfxfx设则2221ln1d,2darctanxtyyyxxyt7.设由参数方程确定则22d8.=()sin()dyyyxyxyx设由方程确定,ln109.:0,.1,0xxfxfxxfxxx设证明在处可导并求232sin210.ln(sin2),11.arcsin(21)cos,12.,13.ln(1),xyxxyyxxyyxyyxxy设求设求设求设求()14.e,xnyxy设求2().1(),()[()])5,.(nfxfxfxfx设具有任意阶导数且求2().1(),()[()])5,.(nfxfxfxfx设具有任意阶导数且求sin16.(1)(01),dy(2).lne,,dyxfxyxxxyfxf设且求设其中可微求3)17((),.||fxxfx求1()sin,0,(0)(0)0,()(0).18.0,0,gxxggfxfxx设求基础计算带练内部讲义12119..sincosxyxx对于求导20.;yxxx21.sin{}sinsinxyxx22.若函数(,)zzxy由方程cos2zexyzxx确定,则(0,1)d________.z44cos23.;3sinxtdytdxyt参量方程在处的124.,011txdytttdxyt参量方程在处的导数n2.l5yxn求的阶导数n2.l5yxn求的阶导数2233d26.:dcoscos(1)(2)sinsinttyxxatxetyatyet求由下列参量方程所确定的两数的二阶导数2227.arctan4(1)(1)20,yxbacxyxy设证明它满足方程2(2)(1)2()2;arcsin,(1)(218)0(0).nnnyxxynxynyn设证明它满足方程:
.29已知2)3(f,则hfhfh2)3()3(lim0=.301arctanxyx,则1xy=)]1ln[arctan(.31xy,则dy=。.32设函数)(xyy由方程0)cos(xyeyx确定,则________dxdy.33已知)(xf为可导的偶函数,且22)1()1(lim0xfxfx,则曲线)(xfy在)2,1(处切线的方程是。.34试确定常数ba,之值,使函数0102)sin1()(xexaxbxfax处处可导基础计算带练内部讲义2.35)2005()2)(1()(xxxxxf,求)0(f;2()()(1)3(0)().nfxxlnxnf36.已知函数,当时,sinln1,0.xeyyxxyyy37.设由方程所确定求cos,t.si(02n4xatybtt38.设椭圆的参数方程为求椭圆在处)的切线方程39.()ln()0(),,()xfxexmxfxmfx已知函数设是的极值点求并讨论,的单调性.40求曲线5323xxy上过点)3,1(处的切线方程和法线方程。基础计算带练内部讲义3