28
Bi_
282
29
O_
283
291
Sc_
D0
01
C0
03
05
粉末
晶体
制备
晶体结构
分析
第41卷第1期2024年2 月J.At.Mol.Phys.,2024,41:012003(6pp)(Bi,03)1-x(Sc,03)x(x=0.01,0.03,0.05)粉末晶体的制备与晶体结构分析原子与分子物理学报JOURNAL OF ATOMIC AND MOLECULAR PHYSICSVol.41 No.1Feb.2024王丹丹,刘泽朋,王瑞刚,包桂芝,香莲(内蒙古民族大学数理学院,通辽0 2 8 0 43)摘要:采用固相烧结法制备(Biz03)1-x(Sc 2 0)(x=0.0 1,0.0 3,0.0 5)粉末晶体,在室温下对几种样品分别进行了X射线衍射实验,并用RIETAN-2000程序中的Rietveld解析法以及VEND、PRI M A 和VICS程序分别研究了几种样品的晶体结构、等高电子密度(2 D和3D)、原子配位数及原子热振动各向同性因子B等。结果表明,(Bi,0.)1-x(Sc.0 3)(x=0.0 1,0.0 3,0.0 5)的晶胞体积(分别为32 9.339 9 A3、32 9.50 16 A、329.3400A)比Bi,0,的晶胞体积(330.36 58 A)小;(Bi0.)1-x(Sc 2 0.)(x=0.0 10.0 3,0.0 5)晶体的原子热振动各向同性温度因子 B(si)/B(s2)B()、B(n 2)B(0 1)B(o 2)B(0 3)的大小分别为0.42 8 8 3 A,0.54412A20.609364 A、0.50 2 542 A 2、0.40 34 A 2、0.6 140 6 A 2、0.7 42 59 A*;0.430 52 A 2、0.52 7 7 8 A 2、0.516 47 A 2、0.382431 A、0.32 0 32 7 A、0.516 7 6 2 A 2、0.7 6 8 7 5 A?和 0.42 347 A2、0.6 10 2 2 A 2、0.51447 6 A、0.30 2 7 2 4 A 2、0.34725A2、0.56 17 5A 2 0.7 2 12 5A 2.确定了(Bi,0)1-x(Sc.0)(x=0.0 1,0.0 3,0.0 5)粉末晶体属于单斜晶系,实现了二维和三维等高电子密度分布的可视化,进一步确定了晶体结构和原子位置。关键词:X射线衍射;Rietveld精修方法;晶体结构中图分类号:0 434.1(Bi,O3)1-x(Sc,03)x(x=0.01,0.03,0.05)powder crystal文献标识码:APreparation and crystal structure analysis ofDOI:10.19855/j.1000-0364.2024.012003WANG Dan-Dan,LIU Ze-Peng,WANG Rui-Gang,BAO Gui-Zhi,XIANG Lian(School of Mathematics and Physics,Inner Mongolia Minzu University,Tongliao 028043,China)Abstract:The(Bi,0,)1-x(Sc20,)(x=0.01,0.03,0.05)powder crystals were prepared by solid-phase sin-tering.X-ray diffraction experiments were performed on several samples at room temperature,and was used.The Rietveld analytical method in the RIETAN-2000 program and the VEND,PRIMA and VICS programs wereused to study the crystal structures,iso-high electron densities(2D and 3D),atomic coordination numbers andatomic thermal vibration isotropy factors B of these samples.The results show that the unit cell volumes(329.3399 A3,329.5016 A,329.3400 A)of(Bi,0,)1-x(Sc0,)(x=0.01,0.03,0.05)are smler thanthat(330.3658A)of Bi,03.Atomic thermal vibration isotropic temperature factors B(sel),B(s2),B(bi),B(Bi2),B(01),B(02)and B(o3)in(Biz0,)1-x(Sc0.)(x=0.01,0.03,0.05)crystals are respectively 0.42883 A2,0.54412 A2,0.609364 A2,0.502542 A2,0.4034 A2,0.61406 A2 and 0.74259 A2 for x=0.01;0.43052 A2,0.52778 A2,0.51647 A2,0.382431 A3,0.320327 A3,0.516762 A2 and 0.76875 A2 for x=0.03;and0.42347 A2,61022 A3,0.514476 A,0.302724 A2,0.34725 A2,0.56175 A3 and 0.72125 A2 for x=0.05.It is determined that the(Bi,0,)1-x(Sc,0,)(x=0.01,0.03,0.05)powder crystal belongs to the monoclinic收稿日期:2 0 2 2-0 6-14基金项目:内蒙古自治区自然科学基金(2 0 18 MS01007);内蒙古自治区自然科学基金(2 0 14MS0109);内蒙古民族大学科学研究基金(NMDGP17107)作者简介:王丹丹(19 9 7 一),女,汉族,内蒙古自治区人,硕士研究生,凝聚态物理。E-mail:6 2 6 0 0 149 3 q q.c o m通讯作者:香莲.E-mail:n m m d x l 16 3.c o m012003-1第41卷system,and the visualization of two-dimensional and three-dimensional high electron density distributions isrealized,The crystal structure and atomic positions were further determined.Key words:XRD;Rietveld refinement method;Crystal structure1 引 言Bi,O,是一种先进的氧离子(O2-)导电体,在铋化合物中有重要的地位,主要用于化工行业、玻璃行业、电子行业及其他行业,其中电子行业是其应用最广的行业,且电子陶瓷粉体材料是氧化铋应用的一个成熟而又充满活力的领域三氧化二铋(Bi,03)有七种晶相,其熔点在8 2 2 至828之间,在常温常压下,Bi,O,稳定存在,升温到7 30 至8 2 2 之间为8。-B.0.mLiang等人3 制备了掺Fe的Bi,O,微球(Fe-BiO,)并对样品进行了表征,马金福等人4 合成了(Bi 0,)0.7 s(Ca O.2 5氧离子导体陶瓷样品,分析了样品的离子导电性Yin等人5 基于DFT框架下的第一性原理平面波超软势方法(USPP),对,-Bi,O,晶体几何结构分别进行了优化计算,从理论上得到了Bi,O,的总体态密度(T D O S)和Bi、O 原子的分波态密度(PDOS)关于化合物掺杂Bi,O,的研究有很多,但Sc,O,掺杂Bi,O,的还未见报道本研究首先利用高温固相烧结法制备(Bi,0,)1-x(Sc,0,)(x=0.0 1,0.0 3,0.05)粉末晶体,对其进行X射线衍射实验,并对实验结果进行晶体结构分析,通过RIETAN-2000程序对粉末晶体进行晶体结构精修,得到原子热振动各向同性因子B.用MaximumEntropyMethod(M EM)解析方法通过Practice IterativeMEM Analyses(PRI M A)模块和Vi-sualization ofElectron/Nuclear Densities(VEND)模块6-17 进行等高电子密度分布可视化,确定晶体结构和原子的位置.2实实验和结果2.1高温固相烧结法制备(Bi,O,)1-x(Sc,O,)x(x=0.01,0.03,0.05)粉末晶体根据摩尔质量比分别称量了10 g的(Bi,0,)0.9(Sc,0,)0.01、(Bi,0,)0.9 7 (Sc,0,)0.0 3(Bi 0,)0.9 5(Sc,0,)0.0 s 混合粉末晶体,在型号为SX,的普通箱式高温炉中7 0 0 焙烧6 h后自然冷却,充分粉碎研磨后再放人高温炉中8 0 0 焙烧原子与分子物理学报10h,自然冷却至室温后进行粉碎研磨,得出(Bi,03)1-x(Sc,0)(x=0.01,0.03,0.05)粉末晶体,至此利用高温固相烧结法成功制备出(Bi,0,)1-x(Sc,03)(x=0.01,0.03,0.05)粉末晶体.2.2X射线衍射实验在室温下,使用型号为D8FOCUS的X射线衍射仪对粉末晶体进行衍射实验此衍射仪的辐射源为CuK,其波长入为1.54A,设置实验过程中仪器的扫描范围为10 7 0,步长为0.0 2,步计数时间为3sec实验结果如图1所示.400003500030000250002000015000100001015202530354045505560657020/deg.图1(Bi,0,)1-x(Scz0,)x(x=0.01,0.03,0.05)粉末晶体的X射线衍射结果Fig.1X-ray diffraction results of(Bi,O,)i-x(Sc20,),(x=0.01,0.03,0.05)powder crystal根据文献18 以及实验结果看,Bi,0,和(Bi,0,)0.99(Sc,0,)0.0 1、(Bi,0,)0.9 7 (Sc 2 0,)0.0 3(Bi,0,)0.9 5(Sc 2 0,)0.0 s 的衍射峰的位置和衍射强度相同,这可以说明它们的晶体的结构是相同的。3晶体结构分析建立晶体结构模型,根据参考文献18 得出,(Bi,0,)1-x(Sc20,)(x=0.01,0.03,0.05)的晶体结构与Bi,O3一样都属于单斜晶系,空间群为P21/C(No.14)如图2 所示是晶体结构模型图,掺杂后的材料模型一致.通过RIETAN2 0 0 0 解析程序对(Bi,0,)1-x(Sc,03),(=0.01,0.03,0.05)分别进行了晶体结构精修,如图3图5所示,其中绿色实线代表计算值,红色点线代表X射线衍射的实012003-2第1期-X=0.01X-0.03X=0.05第41卷Sc图2(Bi,0,)1-(Sc,0,)晶体结构模型Fig.2 The crystal structure model of(Bi,0,)1-x(Sc,0,)x验值,最下方蓝色波动线代表二者的差值,与参考文献进行对比,发现在图3-图5中,Bi,O的图谱中出现-Bi,O,衍射峰19 的地方发生变化,这是由于样品制作时处于高温,使-Bi,O,消失,因此精修图中无删除部分通过精修结果看出,(Bi0,).9(Sc,0,)0.01、(Bi,0,)0.9 7 (Sc 0,)0.03(Bi,0,)0.9 5(Sc,0,).0 5的实验图谱和计算值符合很好Rietveld精修结果如表1所示,表2 表4表示(Bi,0,)1-x(Sc,0,)(x=0.0 1,0.0 3,0.0 5)的各晶体结构参数,由于数据过多,在此原子距离只保留2.2 A之前的数据.12000100008000600040002000王丹丹,等:(Bi,03)1-x(Sc 2 0)(x=0.0 1,0.0 3,0.0 5)粉末晶体的制备与晶体结构分析Bi热振动各向同性温度因子B则变化不大:120001000080006000400020000-2000253035400455055606570758020/deg.图4x=0.03时粉末晶体的晶体结构精修图Fig.4 The refined crystal structure of x=0.03 powdercrystal120001000080006000400020000第1期从而解析结果具有很高的可信度从表1可以看出(Bi,0,)0.99(Sc,0,)0.0 1、(Bi,0,)0.9 7(Sc,0,)0.0 3 和(Bi,0,)0.9 5(Sc,0,)0.0 s 的晶格常数a、b、C、晶胞体积V和夹角变化明显从表2 表4可以看出Bi,0,和(Bi,0,)0.9 9(Sc z 0,)0.0 1、(Bi,0,)0.9 7(Sc,0,)0.0 3、(Bi,0,)0.9 5(Sc,0,)0.0 5的原子配位数Z无变化,但是原子的距离发生变化,而原子0-200025303540455055606570758020/deg.图3x=0.01时粉末晶体的晶体结构精修图Fig.3 The refined crystal structure of x=0.01 powdercrystal在表1中,、b、及、分别代表晶格常数和夹角,V表示晶胞体积,B代表原子热振动各向同性温度因子,S为尺度因子,R为可信度因子当R的值在10 以下时,则表示精修过程中得到的各晶体的结构参数是非常接近其真实值的,-200025303540455055606570758020/deg.图5x=0.05时粉末晶体的晶体结构精修图Fig.5The refined crystal structure of x=0.05 powdercrystal利用Maximum Entropy Method(M EM)解析方法中的PRIMA和VEND两大模块,在12 8 12 8128 像素里计算了(Bi,0,)1-x(Sc,0,)(x=0.0 1,0.03,0.0 5)的3D(立体)和2 D(平面)等高电子密度,如图6 和图7 所示在图6 中,3D的等高电子密度的分布图是球状的,Bi原子的原子序数012003-3第41卷表1(Bi,0,)1-x(Sc,0,)(x=0.0 1,0.0 3,0.0 5)晶体结构参数Table 1(Bi,0,)1-x(Sc,0,),(x=0.01,0.03,0.05)crys-tal structure parametersX-rayx=0.01R/%5.23Rr/%3.21S2.0128a/A5.85109b/A8.15249c/A7.4978690B/112.95290V/A3329.3399B(scl)/A20.42883B(se2)/A20.54412B(Bil)/A20.609364B(Bi2)/A20.502542B(o1)/A20.4034B(02)/A20.61406B(03)/A20.74259表2(Bi,0,)0.9(Sc 2 0,)0.0 1的原子配位数Z和原子距离rTable 2The atomic coordination number Z and atomic dis-tance r of(Bi,0,)0.9(Sc,0,)o.01Z(A)Sc(1)-Bi(1)10.7490Sc(2)Bi(2)Sc(1)0(2)12.0929Sc(2)-0(3)Sc(1)-0(3)11.8061Bi(2)0(2)Bi(1)-0(2)12.1998Bi(2)-Sc(2)Bi(1)-0(3)12.15230(2)-Bi(1)Bi(1)-Sc(1)10.74900(2)Bi(2)0(3)-Bi(1)12.15230(2)-Sc(1)0(3)-Sc(1)11.80610(3)-Sc(2)原子与分子物理学报表3(Bi,0,)0.9 7(Sc 2 0)0.0 3的原子配位数Z和原子距离rTable 3The atomic coordination number Z and atomic dis-tance rof(Bi,0,).9(Sc,0,)0.03Zr(A)x=0.03=0.053.914.212.222.51.62191.95985.853435.852168.152828.151427.497357.496829090112.936112.94029090329.5016329.340.430520.423470.527780.610220.511647 0.5144760.3824310.3027240.3203270.347250.5167620.561750.768750.72125Z(A)10.997611.760711.986512.197010.997612.199812.197012.092911.760711.9865012003-4第1期Z(A)Sc(2)-Bi(1)12.1468Sc(1)-0(1)Sc(2)-Bi(2)12.1189Sc(1)-0(2)Bi(1)-0(1)12.1972Sc(2)-0(3)0(1)-Bi(1)12.1972Sc(2)-Sc(2)0(1)-Sc(1)12.1633Bi(1)-0(2)0(2)Bi(1)12.1612Bi(1)-Sc(2)0(2)-Bi(2)12.1462Bi(2)-0(2)0(2)-Sc(1)11.7071Bi(2)-Sc(2)0(3)-Sc(2)表4(Bi,0,)0.9 s(Sc 0,).0 s 的原子配位数Z和原子距离rTable 4.The atomic coordination number Z and atomic dis-tance r of(Bi,O,)o.9s(Sc,O,).0sZr(A)Sc(1)-0(3)11.3263Sc(2)-0(3)Sc(2)-Bi(2)10.7869Bi(1)-0(2)12.1822Bi(2)-0(2)Bi(2)-0(3)12.1415Bi(2)Sc(2)0(3)-Sc(1)11.32630(2)-Bi(2)0(2)-Bi(1)12.18220(3)Sc(2)0(3)Bi(2)12.1415为8 3,0 原子的原子序数是8,由于X射线是与电子发生散射,从而X射线对O原子的散射强度很弱,因此只有铋(Bi)原子而没有显示出氧(O)原子附近的电子密度分布,可以通过中子衍射的方式来显示氧原子图6 中得出的3D等高电子密度的分布图和图2 中构建的晶体结构的模型相符合,证明初步建立的晶体的结构模型是正确的.图7 为(10 0)晶面的2 D电子等高密度分布图,从平面图中能够看出原子确切的位置,从图6和图7 中可以看出,掺杂(Sc)原子后的电子密度分布图的体积明显小于Bi,O,的体积,与表1中显示的晶胞体积的变化结果非常符合,Sc原子的原子序数为2 1,其原子半径以及电子数目均比Bi原子的小,导致了3D和2 D的电子密度分布的范围变小,从而晶胞体积也变小。12.163311.707110.832911.870612.161212.146812.146212.118910.8329Z(A)11.736311.986712.106710.786912.106711.736311.9867第41卷王丹丹,等:(Bi,03)1-x(Sc z 0,)(x=0.0 1,0.0 3,0.0 5)粉末晶体的制备与晶体结构分析第1期(a)图6(Bi,0,)1-x(Sc 2 0 3)(x=0.0 1,0.0 3,0.0 5)的三维(3D)等高电子密度分布图:(a)(Bi,03)1-x(Sc,0,),(x=0.01),(b)(Bi,03)1-x(Sc,0,)(x=0.03),(c)(Bi,0,)1-x(Sc,0,),(x=0.05)Fig.6Three-dimensional(3D)contour electron density distribution maps of(Bi,O,)1-x(Sc203)x(x=0.01,0.03,0.05):(a)(Bi,0,)1-x(Sc20,)(x=0.01),(b)(Bi203)1-(Sc,03)(x=0.03),(c)(Bi,0,)1-x(Sc20,)(x=0.05)Z(min)0.000 2(ma)-1462.957(b)Z(min)0.000Z(ma)=2193.031(c)Z(min)0.000 2(m8g=2238.019(a)图7(Bi,0 3)1-x(Sc 2 0,)(x=0.0 1,0.0 3,0.0 5)在(10 0)面的二维(2 D)等高电子密度分布图:(a)(Bi,0,)1-x(Sc,0 3)(x=0.0 1),(b)(Bi,0,)1-x(Sc 2 0,)(x=0.03),(c)(Bi,0,)1-x(Sc,03)(=0.05)Fig.7 Two-dimensional(2D)contour electron density distribution maps on the(100)plane of(Bi;03)1-x(Sc20,)(x=0.01,0.03,0.05):(a)(Bi,0,)i-x(Sc20,)x(x=0.01),(b)(Bi,0,)1-x(Sc20,)(x=0.03),(c)(Bi,03)1-x(Sc20,)(x=0.05)4结论通过高温固相烧结法制备了(Bi,0,)1-x(Sc,0,)x(x=0.0 1,0.0 3,0.0 5)粉末晶体,通过X射线衍射实验得出其衍射图谱,并通过Rietveld精修方法对其进行晶体结构精修,确定其晶体结构为单斜晶系,同时将晶格参数、原子位置及原子热振动各向同性温度因子B等全部解析出来。粉末晶体(Bi,0,)0.99(Sc 2 0,)0.0 1的原子热振动各向同性温度因子分别为0.6 0 936 4、0.50 2 542、0.40 34、0.61406、0.7 42 59、0.42 8 8 3、0.54412 A,粉末晶体(Biz0,)0.97(Sc 0,)0.0 3的分别为0.5116 47、0.382431、0.32 0 32 7、0.516 7 6 2、0.7 6 8 7 5、0.430 52、0.52778A,粉末晶体(Bi,0,)0.9s(Sc,0,)0.0 s 的分别为0.51447 6、0.30 2 7 2 4、0.347 2 5、0.56 17 5、0.72125、0.42 347、0.6 10 2 2 A 与参考文献对比得出,粉末晶体(Bi,0,)0.9(Sc,0,)0.0 1V(b)(Bi,0,)0.97(Sc,0,)0.03 和(Bi,0,)0.95(Sc,O,)0.0 s 的晶格常数和晶胞体积以及原子热振动温度因子相比于Bi,O,都有明显变化,利用温度因子B不但可以计算进一步的原子热振动的相关效应值,而且能够解析晶体的热漫散射的强度、电导率、德拜温度因子以及晶格的振动通过MEM解析得到了(Bi,0,)1-x(Sc,0,)(x=0.01,0.03,0.05)的3D和2 D可视化图谱,将等高电子密度分布的3D和2 D的可视化变为现实,进一步证明晶体的结构及原子位置的准确性:参考文献:1Wu S H,Liu J,Lan Y Z.Research status and devel-opment trend of preparation methods of bismuth trioxideJ.Hydrometallurgy China,2005,24:121(in Chi-nese)【吴绍华,刘进,兰尧中,Bi,O,制备方法的研究现状及发展趋势J湿法冶金,2 0 0 5,2 4:12 1012003-5(c)第41卷2Li T,Zhang X C,Wang K,et al.First-principlecalculations on electronic structures and optical proper-ties of,8,n-Bi,O,J.Chem.J.Chin.Univ.,2 0 16,37:92 0(i n Ch i n e s e)李坦,张小超,王凯,等。,,s,n-Bi,0,电子结构和光学性质的第一性原理研究J高等学校化学学报,2016,37:9203 Liang J,Zhu G Q,Liu P.In situ preparation of novelFe-doped Bi,O,microspheres with enhanced visiblelight photocatalytic activity A J/China NANO 2013Abstract Book C.National Center for Nanoscienceand Technology,2013.4Ma J F,Geng G H,Lu Y J,et al.Modification ofCaO-doped Bi,O,-based electrolyte materials J.Power Technol.,2013,37:1773(i n Ch i n e s e)马金福,耿桂宏,卢勇军,等CaO掺杂Bi,O,基电解质材料的改性研究J电源技术,2 0 13,37:17 7 35Yin L F,Niu J F,Shen Z Y,et al.The electronstructure and photocatalytic activity of Ti(IV)doped-Bi,0,J.Sci.China:Chem.,2011,54:179.6Izumi F,Dilanian R A.Recent research developments inphysics:Part II M.Vol.3.Trivandrum:TransworldResearch Network,2002:699.7Zhao M L,Xiang L.Analysis of atomic thermal vibra-tion by Rietvled method in powder MgF,and SrF,J.J.At.Mol.Phys.,2014,31:982(in Chinese)赵敏兰,香莲,采用Rietveld精修方法解析粉末晶体MgF2,Sr F,的原子热振动J原子与分子物理学报,2 0 14,31:9 8 2 8Xiang L,Zhao M L,Sakuma T,et al.Inter-atomicforce constants of PbS from diffuse neutron scatteringmeasurementJ.J.At.Mol.Phys.,2015,32:499(i n Ch i n e s e)【香莲,赵敏兰,佐久间隆,等采用中子衍射实验解析PbS 的原子间力常数J原子与分子物理学报,2 0 15,32:4999Sakuma T.Diffuse scattering intensity of-Agl-type solid electrolytesJ.J.Phys.Soc.Jpn.,1993,原子与分子物理学报62:4150.10Sakuma T,Nakamura Y,Hirota M A,et al.Diffuseneutron scattering from AgBr:Application to RietveldrefinementsJ.Solid State lon.,2000,127:295.11Arai M,Ohki K,Mutou M,et al.Diffuse neutronscattering from GaAsJ.J.Phys.Soc.Jpn.Suppl.A,2001,70:250.12 Sakuma T,Shimoyama T,Basar K,et al.Correlationeffects between thermal displacements of atoms in cop-per halidesJ.Soli.State lon.,2005,176:2689.13 Basar K,Sakuma T.Diffuse X-ray scattering fromNaCIJ.Ind.J.Phys.,2006,17:95.14Sakuma T,Basa K,et al.Oscillatory diffuse X-rayscattering from lead chalcogenides J.J.Them.Ana.Cal.,2010,99:65.15 Sakuma T,Shimizu N,et al.Correlation effects amongthermal displacements of atoms in KBr J.SolidState.lon.,2011,192:54.16Wada T,Sakuma T,SakaiR,et al.Inter-atomicforce constants of Ag,O from diffuse neutron scateringJ.Solid State lon.,2012,225:18.17 Xiang L,Sakuma T,Mohapatra S R,et al.Inter-a-tomic force constants from correlation effects amongthermal displacement of atoms in PbTe J.Mol.Simul.,2012,38:448.18Wang D D,Liu Z P,Xiang L.Analysis of Bi,O,a-tomic thermal vibration based on Rietveld refinementmethodJ.J.Syn.Crys.,2021,50:1422(in Chi-nese)王丹丹,刘泽朋,香莲基于Rietveld精修方法解析Bi,O,的原子热振动J人工晶体学报,2021,50:142219Li H Q,Yu H,Wang Z P,et al.Preparation andcharacterization of Bi,O,powders with different crystalstructures J.China Powder Sci.Technol.,2019,25:7 2(i n Ch i n e s e)李洪全,于涵,王泽普,等.不同晶相Bi,O,粉体的制备与表征J.中国粉体技术,2 0 19,2 5:7 2 第1期012003-6