乙烯
焦油
制备
锂离子电池
负极
材料
用碳质
前驱
氧化
反应
机理
动力学
Cite this:NewCarbonMaterials,2024,39(2):354-366DOI:10.1016/S1872-5805(22)60597-3The oxidation reaction mechanism and its kinetics for a carbonaceousprecursor prepared from ethylene tar for use as ananode material for lithium-ion batteriesGUOTian-rui,CHENRong-qi,GAOWei,WANGYan-li,ZHANLiang*(State Key Laboratory of Chemical Engineering,East China University of Science and Technology,Shanghai 200237,China)Abstract:TheoxidationreactionmechanismanditskineticsforethylenetarwereinvestigatedinordertoobtainasuitableanodematerialforLi-ionbatteries.Theoxidationofethylenetarwasdividedinto3stages(350550,550700and700900K)accordingtothethermogravimetriccurve.Torevealtheoxidationreactionmechanism,thecomponentsofthegasesevolvedatdifferentstageswereanalyzedbymassspectrometryandinfraredtechnology.Basedontheseresultsthereactionwasdividedinto4stages(323400,400605,605750and750860K)toperformsimulationcalculationsofthekinetics.Usingtheiso-conversionmethod(Coats-Red-fern)toanalyzethelinearregressionrates(R2)between17commonreactionkineticsmodelsandexperimentaldata,anoptimumre-actionkineticsmodelforexpressingtheoxidationofethylenetarwasdeterminedandtheresultswereasfollows.(1)Duringoxida-tion,thesidechainsofaromaticcompoundsfirstreactwithoxygentoformalcoholsandaldehydes,leavingperoxy-radicalsonaro-maticrings.Subsequently,thearomaticcompoundswithperoxy-radicalsundergopolymerization/condensationreactionstoformlar-germolecules.(2)Afourth-orderreactionmodelwasusedtodescribethefirst3stagesintheoxidationprocess,andtheactivationenergiesare47.33,18.69and9.00kJmol1at323400,400605,605750K,respectively.Athree-dimensionaldiffusionmodelwasappliedtothefourthstageoftheoxidationprocess,andtheactivationenergyis88.37kJmol1at750860K.Ahighsofteningpointpitchwasalsoproducedforuseasacoatingofthegraphiteanode,andafterithadbeenappliedthecapacityretentionafter300cyclesincreasedfrom51.54%to79.07%.Key words:Ethylenetar;Oxidationreactionmechanism;Reactionkinetics;Carbonaceousprecursor;Lithium-ionbatteries1IntroductionFunctionalcarbonmaterialshavebeenplayinganimportantroleinelectricalapplications,thermalman-agement(e.g.,heat conduction and insulation),en-ergystorage(e.g.,electrodematerials),environmentalprotection(e.g.,gas capture),and various otherfields14.Itiswellknownthathigh-softening-pointpetroleumpitchisanimportantcarbonaceousprecurs-or5.Forexample,petroleumpitchwithahighsoften-ingpointcanbeappliedasthecoatingmaterialtotheanodematerialsoflithium-ionbatteries,rawmateri-alsforpitch-basedcarbonfiberandpitch-basedspher-icalactivatedcarbon68.Amongthese,ethylene tar is an important re-sourceforpreparinghighsofteningpointpetroleumpitches910.Therawmaterialforethyleneproductionismainlynaphtha(atmosphericcrudeoilfractionwithaninitialdistillationpointof200C).TheCHbondandCCbondofnaphthaarebrokenathightemperatures(600800C)toproduceethyleneandpropylene.Meanwhile,olefins can also polymerizeandcyclizetoproducearomatichydrocarbons.There-fore,themaincomponentsofethylenetararemono-cyclic,polycyclic aromatic hydrocarbons and heavyaromaticdistillates,whicharevaluableresourcesrichinaromatichydrocarbons.Asthebyproductofhydro-carbonscrackinginethyleneproduction(ca.15%inyield),ethylenetarisproducedinlargeamountseveryyearwiththeincreasingdemandforethylene.Thus,itisregardedasanidealmaterialforproducinghigh-qualitypitch.Toincreasethesofteningpointandcarbonyieldofsyntheticpitch1114,theairoxidationmethodhasbeenwidelyappliedtopreparehigh-qualitypitch1518.Several researchers11,13,19 have reported that the airoxidationmethodcancausepolymerization/Received date:2021-08-30;Revised date:2021-11-04Corresponding author:ZHANLiang,Professor.E-mail:Author introduction:GUOTian-rui.E-mail:guo_Homepage:http:/ and emission of water2224.Nevertheless,themechanismoftheairoxidationreactionseemstoberelated to the experimental conditions25 and thechemicalpropertiesoftherawmaterials11,13.Mostofthecurrentstudiesfocusontheoxida-tionmechanismandkineticsofstandardmixtures2628.Yamaguchietal.28reportedthattheal-kyl-andbridgedalkyl-aromaticswerethemostreact-iveforlightaromatichydrocarbonspolymerizedwithairat330C,2.1MPa.Meanwhile,basedonfurtheranalysisoftheresultsandproducts,aseriesofoxida-tionmechanismsrelatedtothegrowthofmolecularmass were suggested.In addition,the interactionbetween hydrocarbons was observed while standardcompoundswereoxidizedbyair27.Theoxidationre-actionmechanismandkineticsofindustrialmixturescomposedofaromatichydrocarbons,suchasethylenetar(ET),havebeenlessinvestigateddespitetheeco-nomyandsimplicityoftheprocessandthelowcostoftherawmaterials.Toacquireanexcellentcarbonaceousprecursor,wetriedtorevealtheoxidationprocessofethylenetar.Thereactionextentofethylenetarwasanalyzedbytheweightoftheresidues,whilethereactionpro-cess of ethylene tar was monitored by a combinedTG-MS-FTIRtechnique.BasedontheCoats-Redfernmethod,thebasicdynamicparameterswereattained,whichprovided technical guidance for the prepara-tionofcarbonaceousprecursor.Finally,weproduceda high-softening-point petroleum pitch to coat ongraphitetoimprovetheelectrochemicalpropertiesofanodeinlithium-ionbatteries.2Materialsandmethods 2.1 Raw material and pretreatmentTheoriginalethylenetarprovidedbyPetroChi-naJilin Petrochemical Company Co.,Ltd was pre-treatedbyatmosphericdistillationat230C.Afterre-movingthelightfractions,theheavyresidue(ET-HR)wasusedforsubsequentexperimentsandcharacteriz-ation.Naturalgraphite(NG)wassuppliedbyShang-haiShanshanTechCo.,Ltd.2.2 Experimental proceduresAbout800gET-HRwasplacedina2Lstain-lesssteelreactorandheatedat2Cmin1to310C.Thetemperaturewasheldat310Cfor10h,whilethewholeprocesswasinairatmospherewithaflowrate of 2 Lmin1.The oxidized product cooled toroomtemperaturenaturallywaslabeledasETP.Tocoatgraphite,ETPwasdissolvedinthetet-rahydrofuran solution with NG.The mass ratio ofETPtographitewas1:10.Aftersufficientstirringfor24h,thesolutionwasevaporatedinathermostaticwaterbath.Theobtainedsolidwasthencarbonizedat1000Cfor2hinN2atmosphere.Finally,ETPNGwasacquired.Thehalf-cellwasassembledintheargon-filledgloveboxwiththeelectrolyteof1molL1LiPF6inethylene carbonate(EC)/diethyl carbonate(DMC)/ethylmethylcarbonate(EMC)(111byvolume).Poly(vinylidenefluoride)(PVDF)wasservedasthebinder,while super C was the conductive agent.ETPNG,binder,and conductive agent were dis-persed in N-methyl-2-pyrrolidone(NMP)at a massratioof9253,whichwasthencoatedoncopperfoilanddriedtoserveasanode.CR2016wasusedinthe electrochemical tests with the counter electrode(lithiumfoil)andtheporousseparator(Celgard2500).2.3 CharacterizationTheoxidationprocessofET-HRwasevaluatedby a synchronous thermal analyzer(STA-8000,PerkinElmer,America).Thesampleweightof15mg,aheatingrateof5Kmin1from300to900K,andanairflowrateof20mLmin1werechosenastheex-perimentalconditions.Anelementalanalyzer(VARIOEL,Germany)wasusedtoanalyzetheelementalcompositionofET-HR.Thefourcompon-entsofpitchweremeasuredbythin-layerchromato-graphy(TLC)withflameionizationdetection(FID),whichenhanced our understanding of the composi-第2期GUOTian-ruietal:Theoxidationreactionmechanismanditskineticsforacarbonaceous355tionanddistributionofethylenetar.Agaschromato-graphy-massspectrometry(GCMS-QP2010Plus,Shi-madzu,Japan)wasadoptedtoseparateandidentifythe chemical composition of ET-HR.Based on theprobabilitymatching method(PBM)and the com-poundspectrumdataofNIST08andNIST08Slibrary,thestructureofthecomponentswasdeterminedac-cordingtotheconfidenceorsimilarity29.Themolecularmassdistributionwasanalyzedbyamatrix-assistedlaserdesorption/ionizationtime-of-flightmassspectrometryanalyzer(4800PlusMALDITOF/TOF,AB SCIEX,America).A simultaneousthermalanalyzer(STA-8000,PerkinElmer,America)was used to obtain simultaneous weight signal andheatflowsignalatanairflowrateof20mLmin1andheatingrateof5Cmin1.TheTG-MS-FTIRinstru-mentincludesathermogravimetricanalyzer(SETSVSEvolution16/18,SETARAM,France),amassspec-trumanalyzer(OMNIstar,Pfeiffer,Germany),andaFourier transform infrared spectrometer(Tensor27,Bruker,Germany)30.Thetestconditionsweresettothefollowing:thesampleweightof15mg,anairflowrateof20mLmin1,andaheatingrateof5Cmin1from300to900K.TheevolvedgasesofTGAweredetectedbythemassspectrometerinaheliumatmo-sphereat280C.ThethermogravimetricanalysiswasconnectedwiththeFouriertransforminfraredspectro-meterthroughathermalinsulationpipe,andthetem-perature of the connecting pipe was maintained at280Ctopreventthecondensationoftheproducts.Theinfraredspectrumhadascanningrangeof4000600 cm1 and a resolution of 4 cm1.The scanningelectronmicroscope(SEM,JEOL-7100F,Japan)wasusedtoobservethemorphologyofthesamples.TheX-ray diffraction(XRD,Bruker D8 Advance,Germany)with Cu-Ka radiation(=0.15406 nm)wastodetectthecrystallinestructure.Thescatteringangles(2)werefrom10to80withascanrateof5min1.Thecycleperformanceofthehalf-cellwastestedon LAND CT2001A(China)by galvanostaticcharge/discharge.Thevoltagerangewas02V(vs.Li/Li+).Theratewas0.2Cforthefirst5cycles,afterwhichitkeptat0.5Cuntilthe300thcycle.2.4 Kinetics theoryThepyrolysisofthesolidcanbeexpressedasthefollowingreactionprocess31:A(solid)B(solid)+C(gas)d/dtkf()Inthenon-isothermalexperimentsimulatedbyathermogravimetricanalyzer,theweightofthesamplewasmeasuredasafunctionoftemperature.Therateofconversion,isalinearfunctionofatemper-ature-independentrateconstant andatemperature-independentfunctionofconversion:d/dt=kf()(1)twhere istheconversiondegree,and istime.isexpressedas:=mimtmim(2)mimtt mwhereistheinitialweightofthesample,istheweightofthesampleattime,isthefinalweightofthesampleinthereaction.kThereactionrateconstant,hasbeendescribedbytheArrheniusexpression:k=Aexp(EaRT)(3)AEaRTwhere isthepre-exponentialfactor,istheactiva-tionenergy,isthegasconstant,and istheabso-lutetemperature.ThecombinationofEqs.(1)and(3)gives:d/dt=Aexp(EaRT)f()(4)=dT/dtIfthetemperatureofthesampleischangedbyacontrolledandconstantheatingrate,there-arrangementofEq.(4)gives:d/dT=Aexp(EaRT)f()(5)Theintegrated form of Eq.(5)is further ex-pressedas:G()=w0df()=AwTT0exp(EaRT)dT(6)T0whereistheinitialtemperature.As one of the most popular iso-conversionalmethods,Coats-Redfernapproximationwasadopted,expressedas32:wexp(EaRT)dT=(RT2Ea)exp(EaRT)(7)BycombiningEq.(6)andEq.(7),thenewequa-356新型炭材料(中英文)第39卷tionwasexpressedas:ln(G()T2)=lnAREa(12RTEa)EaRT(8)2RT/EaBecause the expression,is much lessthan1,Eq.(8)couldbesimplifiedas:ln(G()T2)=ln(AREa)EaRT(9)G()ln(G()/T2)1/TA series of reaction models defining aresummarizedinTable13334.Iftheoptimalreactionmodelisselected,thefunctionimageofwithrespecttoshouldbeastraightline.Throughtheslopeandintercept,theactivationenergyandpre-exponentialfactorcanbeobtained.3Resultsanddiscussion 3.1 Characterization of ET-HR3.1.1ThefundamentalpropertiesofET-HRAsshowninTable2,afteratmosphericdistilla-tionat230C,thesaturatedfractionofethylenetarwascompletelyremoved,andtheratioofcarbontohydrogenwas increased to 1.13.In addition,it re-mainedsolubleintolueneevenwhenthecarbonyieldofET-HRreachedthevalueof14.1%.3.1.2GC-MSandLDITOF/MSofET-HRGC-MSwasadoptedtoseparateandidentifythechemical composition of ET-HR.The characteristicpeaks of various compounds were recorded inFig.1(a),andthepossiblesubstancescorrespondingtothesepeaksweresummarizedinTable3.ThedatarevealsthatET-HRisanextremelycomplexmixturecomposedofaromatichydrocarbonswithvarioussidechains.The organic compounds with lower boilingpointscanbeseparatedandconfirmedwellbyGC-MS.Nevertheless,itisdifficulttodistinguishaccur-atelyforsomelargermolecules.Tosolvethisprob-lem,we tried to further analyze ET-HR by LDITOF/MS.TheresultshowninFig.1(b)suggeststhatalargenumberofwell-definedpeaksarenotdisplayedinGC-MS.Inaddition,thesepeaksarecontinuouslydistributedinthemolecularmassrangeof100800,indicatingthatET-HRcontainslotsofpolycyclicaro-matichydrocarbons.3.2 Oxidation mechanism of ET-HR3.2.1DSC-TGAofET-HRAsshowninFig.2(b),DTGcurvereveals3sig-nificantmasslossstages,andthemasslossdataatdif-ferentstagesisshowninFig.2(a).Thefirststageoc-cursbetween300and520K,andthepeakappearsat399K.Thefirststage,showingmasslossof42.7%,iscausedbythevolatilizationoflightcomponents,to-gether with oxidation and polymerization/condensa-Table 1 A series of frequently-used mechanism models defining G()33-34MechanismsSymbolf()G()OrderofreactionFirstorderF11ln(1)SecondorderF2(1)2(1)11ThirdorderF3(1)3(1)21/2FourthorderF4(1)4(1)31/3DiffusionOne-waytransportD10.52Two-waytransportD2ln(1)1+(1)ln(1)Three-waytransportD31.5(1)2/31(1)1/311(1)1/32ContractinggeometryContractingcylinderR22(1)1/21(1)1/2ContractingsphereR33(1)2/31(1)1/3RandomnucleationandnucleigrowthAvrami-ErofeevA3/21.5(1)ln(1)1/3ln(1)3/2Avrami-ErofeevA22(1)ln(1)1/2ln(1)1/2Avrami-ErofeevA33(1)ln(1)2/3ln(1)1/3Avrami-ErofeevA44(1)ln(1)3/4ln(1)1/4ExponentialnucleationPowerlawP3/22/31/22/3PowerlawP221/21/2PowerlawP332/31/3PowerlawP443/41/4第2期GUOTian-ruietal:Theoxidationreactionmechanismanditskineticsforacarbonaceous357tion of aromatic compounds.Volatilization of lightcomponentsisanendothermicprocess,whileoxida-tion and polymerization/condensation of aromaticcompoundsareexothermicprocesses.TheDSCcurveshowsthatthewholeprocessisendothermicfrom300to400K,indicatingthatthevolatilization of light components plays a dominantrole.After 400 K,the endothermic state graduallychangestoanexothermicstate,indicatingthatthevo-latilization of light components gradually decreasesandexothermicreactionssuchasoxidationandcon-densationpolymerizationofaromaticcompoundsaregraduallyenhanced.From520to719K,thepeakofthesecondstageappearsat619K.Inthisstage,theoxidationandpolymerization/condensationofaromat-iccompoundsplayanimportantrole,whichcausesamasslossof31.3%.Inthethirdstage,between719and900K,thereisamasslossof26.1%.Thepeakofthethirdstageappearsat820K.TheDSCcurvesug-gests that there is a great exothermic peak at thisstage,indicatingthataviolentexothermicreactionoc-curs.Itisinferredthatthisprocessmaybeaviolentthermaloxidativedecompositionoffusedringaromat-iccompounds.3.2.2Evolvedgasesanalysisoftheoxidationpro-cessofET-HRBasedonGC-MS,somesubstancesthatmayap-pearintheevolvedgasescanbedetermined.Astherepresentative of oxidation products,mass units ofthese compounds are recorded in Table 4 and sub-sequentlyanalyzedbymassspectrometer.AsshowninFig.3(a),thepeakofthefirststageappearsat450K,whichisslightlyhigherthanthatoftheDTGcurve.Thethermogravimetryanalyzerandmassspectromet-erareconnectedbypipeline,whichcausesthedelay.Twoamuisallocatedtohydrogenasanimport-antfeatureofpolymerization/condensation.Withtheoccurrenceofpolymerization/condensation,theratioofcarbontohydrogenincreaseswhileHleavesintheform of hydrogen or other small molecules.In thecurve,thereare2peaksofpolymerization/condensa-tion,respectively appearing at 450 and 650 K.De-pendingonthesizeofthemolecule,thedifficultyofthereactionisdifferent.Thelargerthemoleculeis,the more difficult polymerization/condensation willbe.Taking 2,6-dimethylnaphthalene as an example,thepossiblereactionisshowninFig.4.16amumaybethepeakofmethane.BasedonGC-MS,weknowthatlotsofalkylsidechainsarepresentinET-HR,soitisverylikelytoproducegasesTable 2 The fundamental properties of ethylene tar and ET-HRElementa