求不定积分计算题及答案1、dxxx=___________。解析:Cxdxxdxxx2523522、xxdx2=_____________。解析:Cxdxxxxdx23252323、dxxx)23(2=_____________。解析:Cxxxdxxx22331)23(2324、dxxxxsincos2cos=___________。解析:dxxxxxdxxxxsincossincossincos2cos22Cxxdxxxcossin)sin(cos5、xdx2cos1=____________。解析:Cxxdxxdxxdxtan21sec211cos212cos1226、dxxax22解析:Cxaxadxadxxax2222212222)()(217、dxxxx13412解析:2222223)2()2(134)134(21134242211341xxdxxxxddxxxxdxxxxCxxx32arctan31)134ln(2128、dxeexx1ln1解析:dxeeeeeededxeexxxxxxxxx1)1ln()()1ln()1ln(dxeeeeexxxxx11)1ln(Cexeexxx)1ln()1ln(9、xdxx2sin解析:xdxxxdxdxxxxdxx2cos212122cos1sin2Cxxxxxxdx2cos812sin41412sin41412210、dxxxsin2222222,,d2d,2sind2dcos2cos4cosd2cos4dsin2cos4sin4sind2cos4sin4cos2cos4sin4cos;txxtxtttttttttttttttttttttttttttCxxxxxC解析:令则原式11.tand.xx求sinx(cosx)tanxdx=dx=-dxcosxcosx1cos,(),1tanddlnlncosuxguuxxuuCxCu解析:由于可令则得∣∣∣∣12.22d0.xaax求2222dd1()1()1d1arctan11arctan.xxxauxaxaaauuCauaxCaa析:令解13.22d(0)xaax求22222dd1d11arcsin.xxxaaaxxxaaxCa解析:14.22d(0)axxa求22222222222asin,(arcsin).2dcosd(sin)cosd1[(1cos2)d(sin2)222arcsin121(arcsin).2xxtttaaxxatatattaattttCaxxxCaaaxaxaxCa解析:令∣∣这是存在反函数的一个单调区间于是15.22d0.xaxa求22sec,00),2dsectandsecdtanlnsectan.xattxatttttatxattC解析:令(同理可考虑t的情况于是有∣∣16.arctand.xx求2221arctan,1,,,1arctandarctand11arctanln(1)2uxvuvxxxxxxxx...