—1—0基础知识07课后小测验答案1.说明下列各对积分哪一个的值比较大。(1)A.120xdxB.130xdx;(2)A.221xdxB.231xdx;(3)A.21lnxdxB.221(ln)xdx;(4)A.10xdxB.10ln(1)xdx.【答案】:ABAA解析:本题考查定积分的比较定理,积分区间均从小到大,只要考虑被积函数的大小关系即可.当(0,1)x时,23xx,所以112300xdxxdx.当(1,2)x时,23xx,所以222311xdxxdx.当(1,2)x时,21ln(ln)0xx,所以22211ln(ln)xdxxdx当(0,1)x时,ln(1)xx,所以1100ln(1)xdxxdx2.设函数20()ln(2)xfxtdt,则()fx的零点个数为()(A)0(B)1(C)2(D)3答案:B解析:2()2ln(2)fxxx,令2()2ln(2)0fxxx,得到0x,所以()fx的零点个数为1个.3.求极限2220limxtxxtedtxe答案:12解析:2222222220221limlimlimlim12222xtxxxxxxxxtedtxexxxxxeexxe—2—4.322(sin)xxdx_______.A.0B.32C.12D.32答案:B解析:322322---sindsinddxxxxxxx.由于3sinx是奇函数,所以3-sind=0xx.由定积分的几何意义可知22-dxx表示圆心在原点,半径为的上半圆的面积,所以322-d=2xx.从而3322-sind2xxx.5.411d1xxA.322ln2B.222ln3C.322ln2D.32ln2答案:C解析:令xt,则2xt,22dxdttdt;当1x时,1t;当4x,2t42221111221111111d222(1)1111322ln(1)22(ln3ln2)22ln2txtdtdtdttttxtt6.2224daaxaxx(0a)A.234aB.234aC.238aD.238a—3—答案:D解析:令secxat,则secsectandxdatattdt;当xa时,0t;当2xa时,3t2222334442300223333222000322tan1tandsectansecsec111sincossinsinsin3133328aaxaattxattdtdtxatatttdttdttaaaaa7.10dxxexA.121eB.121eC.21eD.21e答案:A解析:11111100000111ddd(1)21xxxxxxexxexeexeeeee8.10arctandxxxA.182B.142C.142D.182答案:B解析:2221111020002112200101arctandarctandarctand2221111111d(1)d2421821111(arctan)(1)8282442xxxxxxxxxxxxxxxxx