高数强化2-2巩固练习《高数辅导讲义·严选题》P11-12:20,21,22,23,24,25,30,31,32综合测试1.设yfx由参数方程221(0)4xttytt确定,则21lim3nnnfn_______.2.设3d1()dfxxx,则()fx_______.3.设2()zfxy,其中x,y满足eyyx,f,均具有二阶导数,求ddzx,22ddzx.4.设2arctan2eln(e)yxtyt,则0ddxyx_______.5.设()yyx由ecos10xyyxx确定,求0dxy_______.6.设函数yyx由22210ln1edarcsind0yutxtuuu确定,则yyx在ln2x处的法线方程为_______.7.设cos,121,1xxyxx,求y.8.设函数()yyx为由方程2202sind1yxtt确定的隐函数,则dy_______.9.设12()ln13xfxx,2n,则()(0)nf_______.10.(94-2)设()yfxy,其中f具有二阶导数,且其一阶导数不等于1,求22ddyx.11.(03-2)xy2的麦克劳林公式中nx项的系数是_______.12.(06-3)设函数()fx在2x的某领域内可导,且()()efxfx,(2)1f,则(2)f_______.13.(07-2;3)设函数123yx,则()(0)ny_______.14.(92-3)设()limxxxtfttxt,则()ft_______.15.(94-1)设2221cos,1coscosd,2txtyttuuu求ddyx,22ddyx在2t的值.拓展提升1.2222()(1)(2)()fxxxxxn,则(0)f_______.2.已知431esinxyxx,则y_______.3.设ln(ln)(ln)(1)xxyxx,则y_______.4.设211xyfx,13()lnfxx,则221ddxyx_______.5.设(,)fxy可微,(1,2)2f,(1,2)3xf,(1,2)4yf,,(,2)φxfxfxx,则(1)φ_______.6.设()xφy是()yfx的反函数,()fx可导,且21()exxfx,(0)3f,求(3)φ.7.设222()(1)xfxx,则()(0)nf(3)n.8.设22()(23)arctan3nxfxxx,其中n为正整数.则()(3)nf()(A)0(B)224!nn(C)22(1)!4nnn(D)12(1)(1)!4nnn9.(数一数二)若ln,mxtyt则()()nyx_______.10.设函数()yfx由方程22()2ed3sinyxtxxtxx确定,则曲线()yfx在点(0,0)的切线方程为_______.