高数强化2-1巩固练习《高数辅导讲义·严选题》P9-12:1,2,3,4,5,6,7,8,18,19,29,33,34综合测试1.设()fx存在,a,b为任意实数,则0()()limxfxaxfxbxx().(A)()()xabf.(B)()()xabf.(C)()afx.(D)()bfx.2.设()11xfxx,则fx在0x处().(A)连续且可导.(B)右连续但右导数不存在.(C)右连续且右导数存在.(D)右极限存在且右导数存在.3.设()yfx由方程21sind4yxtxt确定,则1lim1nnfn_______.4.设)0(f存在且为正数,101cos()lim1esinxxfxx,则)0(f_______.5.设连续函数()yfx在点(1)0,处满足()yxox,则极限e2301()dlimln1xxfttxx_______.6.设1sin,0,()0,0.kxxfxxx(Ⅰ)当k为何值时,()fx在0x处不可导;(Ⅱ)当k为何值时,()fx在0x处可导,但导函数不连续;(Ⅲ)当k为何值时,()fx在0x处导函数连续.7.2100()tan1tan2tan100444fxxxx,则)1(f_______.8.设2sin,0,()ln(1),0,axbxcxfxxx问a,b,c为何值时,fx在0x处一阶导数连续,但二阶导数不存在?9.设fx满足2,00fxfxf,又在1,1内fxx,则72f_______.10.设21arctan,1()1e,124xxxfxxx,则()fx_______.11.设ln(1),0()1,0bxxfxxx,其中b为某常数,()fx在定义域上处处可导,则()fx_______.12.设2,0()1sin,0axxfxxxx,若()fx可导,则α应满足_______;若()fx连续,则α应满足_______.13.设()fx是以3为周期的可导函数且是偶函数,(2)1f,则0lim(52sin)(5)hhfhf_______.14.设()fx在0x可导且(0)1f,(0)3f,则数列极限111cos1limnnnIfn_______.15.设()fx在xa处二阶导数存在,则0()()()limhfahfafahIh_______.16.(95-3)设2202(1cos),0,()1,0,1cosd,0,xxxxfxxttxx讨论()fx在0x处的连续性和可导性.拓展提升1.设()fx在(1,1)上有定义且为奇函数,当(0,1)x时,cosln(1)()xxxfxx,则函数()fx在0x处().(A)左导数不存...