—1—0基础知识10课后小测验答案1.已知3322,(,)(0,0)(,)0,(,)(0,0).xyxyfxyxyxy,,则(,)fxy在(0,0)点处()A.(0,0),(0,0)xyff都存在B.(0,0)xf不存在,(0,0)yf存在C.(0,0)xf不存在,(0,0)yf不存在D.(0,0),(0,0)xyff都不存在答案:A解析:根据偏导数的定义可知00(,0)(0,0)0(0,0)limlim1xxxfxfxfxx,00(0,)(0,0)0(0,0)limlim1yxxfyfyfyy,所以(0,0),(0,0)xyff都存在.2.设arctanyxze,求2zxyA.22arctan222()yxyxexyB.22arctan22yxyxxyexyC.22arctan222()yxyxxyexyD.22arctan222()yxyxxyexy答案:D解析:先求zx,等式两边对x求偏导可得,2arctanarctan22221yyxxyzyxeeyxxyx①,①式两边再对y求偏导可得,22222arctanarctanarctan22222222221()()1yyyxxxzyxyyxxyxeeeyxyxyxyxyx—2—3.设2cosarcsinzxyxyy,求2zxyA.212cos(arcsin)11xyyyB.21cos(arcsin)11xyyyC.212cos(arcsin)11xyyyD.21cos(arcsin)11xyyy答案:C解析:先求zx,等式两边对x求偏导可得,2()sin(arcsin)zxyxyyx①,①式两边再对y求偏导可得,2212cos(arcsin)11zxyyxyy4.设yzxyfx,()fu可导,求zzxyxy答案:2z解析:21,zyyyzyyyfxyfxfxyfxxxxyxxx,22zzyxyxyfzxyx5.设22,2zfxyxy,其中(,)fuv具有连续的二阶偏导数,求22zxA.22111222484xfxyfyfB.2211112222844fxfxyfyfC.2211112222444fxfxyfyfD.2211112222484fxfxyfyf答案:D解析:122111212222211112222222(22)2(22)2484zxfyfxzfxfxfyyfxfyxfxfxyfyf—3—6.设22,2zfxyxy,其中(,)fuv具有连续的二阶偏导数,求2zxyA.22111222444xyfxyfxyf...