—1—0基础知识10课后小测验1.已知3322,(,)(0,0)(,)0,(,)(0,0).xyxyfxyxyxy,,则(,)fxy在(0,0)点处()A.(0,0),(0,0)xyff都存在B.(0,0)xf不存在,(0,0)yf存在C.(0,0)xf不存在,(0,0)yf不存在D.(0,0),(0,0)xyff都不存在2.设arctanyxze,求2zxyA.22arctan222()yxyxexyB.22arctan22yxyxxyexyC.22arctan222()yxyxxyexyD.22arctan222()yxyxxyexy3.设2cosarcsinzxyxyy,求2zxyA.212cos(arcsin)11xyyyB.21cos(arcsin)11xyyyC.212cos(arcsin)11xyyyD.21cos(arcsin)11xyyy4.设yzxyfx,()fu可导,求zzxyxy5.设22,2zfxyxy,其中(,)fuv具有连续的二阶偏导数,求22zxA.22111222484xfxyfyfB.2211112222844fxfxyfyfC.2211112222444fxfxyfyfD.2211112222484fxfxyfyf6.设22,2zfxyxy,其中(,)fuv具有连续的二阶偏导数,求2zxyA.22111222444xyfxyfxyfB.2221112222244fxyfxyfxyfC.2221112222444fxyfxyfxyfD.222111222244fxyfxyfxyf—2—7.设(,)zzxy是由方程22xyzxyz所确定的函数,其中具有2阶导数且1,求zx,zyA.21zxx,21zyyB.21zxx,21zyyC.1zxx,1zyyD.21zxx,21zyy8.设(,)zzxy是由方程22240xyzz所确定的函数,求zxA.2zxxzB.2zxxzC.22zxxzD.2zxxz