25高数强化(9)主讲武忠祥教授9微分中值定理证明题方法举例P81-P90题型五微分中值定理有关的证明题(一)证明存在一个点),,(ba使0)](),(,[ffF方法:构造辅助函数用罗尔定理.构造辅助函数的方法主要有两种0)](),(,[ffF),(xg)](),(,[)(xfxfxFxg1.分析法(还原法)的分析,确定使根据对欲证的结论2.微分方程法:欲证:0)](),(,[ffF0),,(yyxFCyxH),(1)求微分方程的通解2)设辅助函数:))(,()(xfxHxg25武忠祥考研)(xf],[ba),(ba,)(,)(abfbafab),,(ba.)()(ff【例1】设在上连续,在内可导,与同号,求证:使0)()(ff),()(xxfxg,)()(,)()(abbbfbgabaafag),(ba0)(g0)()(ff1.分析法:欲证令则由罗尔定理知,使即原题得证.【证】只要证.)()(ff2.微分方程法:)()(ff,解微分方程欲证,xyy.Cxy)()(xxfxg得其通解为则应构造辅助函数则应构造辅助函数)()(xxfxg25武忠祥考研)(xf]21[,)2,1(.2)2(,21)1(ff)2,1(.)(2)(ff【例2】设在上连续,在内可导且求证:使0)(2)(ff2)()(xxfxF,21)1()1(fF214)2()2(fF【证】只要证令则),2,1(.0)(F0)(2)(42ff0)(2)(ff由罗尔定理知使即从而有原题得证.25武忠祥考研,0)()(nff);()(xfxxFn【注】令1)欲证,0)()(nff;)()(nxxfxF2)欲证令25武忠祥考研)(xf],[ba),(ba.0)()(bfaf),,(ba.0)()(ff【例3】设在上连续,在内可导,且求证:使),()(xfexFx,0)()(bFaF【证】令则25武忠祥考研),,(ba由罗尔定理知,使.0)(F0)]()([ffe0e0)()(ff即但则故原题得证.【注】,0)()(ff);()(xfexFx1)欲证令,0)()(ff);()(xfexFx特别的令,0)()(ff);()(xfexFx令,0)()(ff)0();()(xfexFx2)欲证令,0)()()(fgf);()()(xfexFxg3)欲证令,0)()()(fgf);()()(xfexFdxxg4)欲证令,0)()(nff);()(xfxxFn令1)欲证,0)()(nff;)()(nxxfxF2)欲证令25武忠祥考研)(xf]1,0[.121,0)1()0(fff1,21;)(f,),0(.1])([)(ff【例4】设在上连...