温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
贵州省
湄潭县
高级中学
高考
仿真
数学试卷
解析
2023学年高考数学模拟测试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设函数(,为自然对数的底数),定义在上的函数满足,且当时,.若存在,且为函数的一个零点,则实数的取值范围为( )
A. B. C. D.
2.设,,则( )
A. B.
C. D.
3.设集合,,若集合中有且仅有2个元素,则实数的取值范围为
A. B.
C. D.
4.执行如图的程序框图,若输出的结果,则输入的值为( )
A. B.
C.3或 D.或
5.陀螺是中国民间最早的娱乐工具,也称陀罗. 如图,网格纸上小正方形的边长为,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为( )
A. B.
C. D.
6.已知,则的大小关系为( )
A. B. C. D.
7.设,,则( )
A. B. C. D.
8.如图,矩形ABCD中,,,E是AD的中点,将沿BE折起至,记二面角的平面角为,直线与平面BCDE所成的角为,与BC所成的角为,有如下两个命题:①对满足题意的任意的的位置,;②对满足题意的任意的的位置,,则( )
A.命题①和命题②都成立 B.命题①和命题②都不成立
C.命题①成立,命题②不成立 D.命题①不成立,命题②成立
9.已知双曲线的右焦点为为坐标原点,以为直径的圆与双 曲线的一条渐近线交于点及点,则双曲线的方程为( )
A. B. C. D.
10.在边长为的菱形中,,沿对角线折成二面角为的四面体(如图),则此四面体的外接球表面积为( )
A. B.
C. D.
11.正三棱锥底面边长为3,侧棱与底面成角,则正三棱锥的外接球的体积为( )
A. B. C. D.
12.如图,已知直线与抛物线相交于A,B两点,且A、B两点在抛物线准线上的投影分别是M,N,若,则的值是( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知实数,满足,则目标函数的最小值为__________.
14.如图所示,在正三棱柱中,是的中点,, 则异面直线与所成的角为____.
15.抛物线的焦点到准线的距离为 .
16.已知是同一球面上的四个点,其中平面,是正三角形,,则该球的表面积为______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在四棱柱中,底面为正方形,,平面.
(1)证明:平面;
(2)若,求二面角的余弦值.
18.(12分)已知函数,
(Ⅰ)当时,证明;
(Ⅱ)已知点,点,设函数,当时,试判断的零点个数.
19.(12分)已知,且的解集为.
(1)求实数,的值;
(2)若的图像与直线及围成的四边形的面积不小于14,求实数取值范围.
20.(12分)在数列中,,
(1)求数列的通项公式;
(2)若存在,使得成立,求实数的最小值
21.(12分)已知函数.
(Ⅰ)求在点处的切线方程;
(Ⅱ)已知在上恒成立,求的值.
(Ⅲ)若方程有两个实数根,且,证明:.
22.(10分)团购已成为时下商家和顾客均非常青睐的一种省钱、高校的消费方式,不少商家同时加入多家团购网.现恰有三个团购网站在市开展了团购业务,市某调查公司为调查这三家团购网站在本市的开展情况,从本市已加入了团购网站的商家中随机地抽取了50家进行调查,他们加入这三家团购网站的情况如下图所示.
(1)从所调查的50家商家中任选两家,求他们加入团购网站的数量不相等的概率;
(2)从所调查的50家商家中任取两家,用表示这两家商家参加的团购网站数量之差的绝对值,求随机变量的分布列和数学期望;
(3)将频率视为概率,现从市随机抽取3家已加入团购网站的商家,记其中恰好加入了两个团购网站的商家数为,试求事件“”的概率.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
先构造函数,由题意判断出函数的奇偶性,再对函数求导,判断其单调性,进而可求出结果.
【题目详解】
构造函数,
因为,
所以,
所以为奇函数,
当时,,所以在上单调递减,
所以在R上单调递减.
因为存在,
所以,
所以,
化简得,
所以,即
令,
因为为函数的一个零点,
所以在时有一个零点
因为当时,,
所以函数在时单调递减,
由选项知,,
又因为,
所以要使在时有一个零点,
只需使,解得,
所以a的取值范围为,故选D.
【答案点睛】
本题主要考查函数与方程的综合问题,难度较大.
2、D
【答案解析】
由不等式的性质及换底公式即可得解.
【题目详解】
解:因为,,则,且,
所以,,
又,
即,则,
即,
故选:D.
【答案点睛】
本题考查了不等式的性质及换底公式,属基础题.
3、B
【答案解析】
由题意知且,结合数轴即可求得的取值范围.
【题目详解】
由题意知,,则,故,
又,则,所以,
所以本题答案为B.
【答案点睛】
本题主要考查了集合的关系及运算,以及借助数轴解决有关问题,其中确定中的元素是解题的关键,属于基础题.
4、D
【答案解析】
根据逆运算,倒推回求x的值,根据x的范围取舍即可得选项.
【题目详解】
因为,所以当,解得 ,所以3是输入的x的值;
当时,解得,所以是输入的x的值,
所以输入的x的值为 或3,
故选:D.
【答案点睛】
本题考查了程序框图的简单应用,通过结果反求输入的值,属于基础题.
5、C
【答案解析】
画出几何体的直观图,利用三视图的数据求解几何体的表面积即可,
【题目详解】
由题意可知几何体的直观图如图:
上部是底面半径为1,高为3的圆柱,下部是底面半径为2,高为2的圆锥,
几何体的表面积为:,
故选:C
【答案点睛】
本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键.
6、A
【答案解析】
根据指数函数的单调性,可得,再利用对数函数的单调性,将与对比,即可求出结论.
【题目详解】
由题知,
,则.
故选:A.
【答案点睛】
本题考查利用函数性质比较大小,注意与特殊数的对比,属于基础题..
7、D
【答案解析】
集合是一次不等式的解集,分别求出再求交集即可
【题目详解】
,
,
则
故选
【答案点睛】
本题主要考查了一次不等式的解集以及集合的交集运算,属于基础题.
8、A
【答案解析】
作出二面角的补角、线面角、线线角的补角,由此判断出两个命题的正确性.
【题目详解】
①如图所示,过作平面,垂足为,连接,作,连接.
由图可知,,所以,所以①正确.
②由于,所以与所成角,所以,所以②正确.
综上所述,①②都正确.
故选:A
【答案点睛】
本题考查了折叠问题、空间角、数形结合方法,考查了推理能力与计算能力,属于中档题.
9、C
【答案解析】
根据双曲线方程求出渐近线方程:,再将点代入可得,连接,根据圆的性质可得,从而可求出,再由即可求解.
【题目详解】
由双曲线,
则渐近线方程:,
,
连接,则,解得,
所以,解得.
故双曲线方程为.
故选:C
【答案点睛】
本题考查了双曲线的几何性质,需掌握双曲线的渐近线求法,属于中档题.
10、A
【答案解析】
画图取的中点M,法一:四边形的外接圆直径为OM,即可求半径从而求外接球表面积;法二:根据,即可求半径从而求外接球表面积;法三:作出的外接圆直径,求出和,即可求半径从而求外接球表面积;
【题目详解】
如图,取的中点M,和的外接圆半径为,和的外心,到弦的距离(弦心距)为.
法一:四边形的外接圆直径,,
;
法二:,,;
法三:作出的外接圆直径,则,,,
,,,
,,,.
故选:A
【答案点睛】
此题考查三棱锥的外接球表面积,关键点是通过几何关系求得球心位置和球半径,方法较多,属于较易题目.
11、D
【答案解析】
由侧棱与底面所成角及底面边长求得正棱锥的高,再利用勾股定理求得球半径后可得球体积.
【题目详解】
如图,正三棱锥中,是底面的中心,则是正棱锥的高,是侧棱与底面所成的角,即=60°,由底面边长为3得,
∴.
正三棱锥外接球球心必在上,设球半径为,
则由得,解得,
∴.
故选:D.
【答案点睛】
本题考查球体积,考查正三棱锥与外接球的关系.掌握正棱锥性质是解题关键.
12、C
【答案解析】
直线恒过定点,由此推导出,由此能求出点的坐标,从而能求出的值.
【题目详解】
设抛物线的准线为,
直线恒过定点,
如图过A、B分别作于M,于N,
由,则,
点B为AP的中点、连接OB,则,
∴,点B的横坐标为,
∴点B的坐标为,把代入直线,
解得,
故选:C.
【答案点睛】
本题考查直线与圆锥曲线中参数的求法,考查抛物线的性质,是中档题,解题时要注意等价转化思想的合理运用,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、-1
【答案解析】
作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.
【题目详解】
作出实数x,y满足对应的平面区域如图阴影所示;
由z=x+2y﹣1,得yx,
平移直线yx,由图象可知当直线yx经过点A时,
直线yx的纵截距最小,此时z最小.
由,得A(﹣1,﹣1),
此时z的最小值为z=﹣1﹣2﹣1=﹣1,
故答案为﹣1.
【答案点睛】
本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,是基础题
14、
【答案解析】
要求两条异面直线所成的角,需要通过见中点找中点的方法,找出边的中点,连接出中位线,得到平行,从而得到两条异面直线所成的角,得到角以后,再在三角形中求出角.
【题目详解】
取的中点E,连AE, ,易证,∴为异面直线与所成角,
设等边三角形边长为,易算得∴在
∴
故答案为
【答案点睛】
本题考查异面直线所成的角,本题是一个典型的异面直线所成的角的问题,解答时也是应用典型的见中点找中点的方法,注意求角的三个环节,一画,二证,三求.
15、
【答案解析】
试题分析:由题意得,因为抛物线,即,即焦点到准线的距离为.
考点:抛物线的性质.
16、
【答案解析】
求得等边三角形的外接圆半径,利用勾股定理求得三棱锥外接球的半径,进而求得外接球的表面积.
【题目详解】
设是等边三角形的外心,则球心在其正上方处.设,由正弦定理得.所以得三棱锥外接球的半径,所以外接球的表面积为.
故答案为:
【答案点睛】
本小题主要考查几何体外接球表面积的计算,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)详见解析;(2).
【答案解析】
(1)连接,设,可证得四边形为平行四边形,由此得到,根据线面平行判定定理可证得结论;
(2)以为原点建立空间直角坐标系,利用二面角的空间向量求法可求得结果.
【题目详解】
(1)连接,设,连接,
在四棱柱中,分别为的中点,,
四边形为平行四边形,,
平面,平面,平面.
(2)以为原点,所在直线分别为轴建立空间直角坐标系