温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
贵州省
毕节市
黔西县
树立
中学
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在菱形中,,,,分别为,的中点,则( )
A. B. C.5 D.
2.以下四个命题:①两个随机变量的线性相关性越强,相关系数的绝对值越接近1;②在回归分析中,可用相关指数的值判断拟合效果,越小,模型的拟合效果越好; ③若数据的方差为1,则的方差为4;④已知一组具有线性相关关系的数据,其线性回归方程,则“满足线性回归方程”是“ ,”的充要条件;其中真命题的个数为( )
A.4 B.3 C.2 D.1
3.设集合,,则集合
A. B. C. D.
4.点为不等式组所表示的平面区域上的动点,则的取值范围是( )
A. B. C. D.
5.下图所示函数图象经过何种变换可以得到的图象( )
A.向左平移个单位 B.向右平移个单位
C.向左平移个单位 D.向右平移个单位
6.已知△ABC中,.点P为BC边上的动点,则的最小值为( )
A.2 B. C. D.
7.已知双曲线与双曲线没有公共点,则双曲线的离心率的取值范围是( )
A. B. C. D.
8.设全集,集合,.则集合等于( )
A. B. C. D.
9.已知复数z=(1+2i)(1+ai)(a∈R),若z∈R,则实数a=( )
A. B. C.2 D.﹣2
10.已知F为抛物线y2=4x的焦点,过点F且斜率为1的直线交抛物线于A,B两点,则||FA|﹣|FB||的值等于( )
A. B.8 C. D.4
11.已知m,n是两条不同的直线,,是两个不同的平面,给出四个命题:
①若,,,则;②若,,则;
③若,,,则;④若,,,则
其中正确的是( )
A.①② B.③④ C.①④ D.②④
12.泰山有“五岳之首”“天下第一山”之称,登泰山的路线有四条:红门盘道徒步线路,桃花峪登山线路,天外村汽车登山线路,天烛峰登山线路.甲、乙、丙三人在聊起自己登泰山的线路时,发现三人走的线路均不同,且均没有走天外村汽车登山线路,三人向其他旅友进行如下陈述:
甲:我走红门盘道徒步线路,乙走桃花峪登山线路;
乙:甲走桃花峪登山线路,丙走红门盘道徒步线路;
丙:甲走天烛峰登山线路,乙走红门盘道徒步线路;
事实上,甲、乙、丙三人的陈述都只对一半,根据以上信息,可判断下面说法正确的是( )
A.甲走桃花峪登山线路 B.乙走红门盘道徒步线路
C.丙走桃花峪登山线路 D.甲走天烛峰登山线路
二、填空题:本题共4小题,每小题5分,共20分。
13.设函数,,其中.若存在唯一的整数使得,则实数的取值范围是_____.
14.展开式中的系数为_________.
15.有编号分别为1,2,3,4,5的5个红球和5个黑球,从中随机取出4个,则取出球的编号互不相同的概率为_______________.
16.已知,满足约束条件则的最大值为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知椭圆,点,点满足(其中为坐标原点),点在椭圆上.
(1)求椭圆的标准方程;
(2)设椭圆的右焦点为,若不经过点的直线与椭圆交于两点.且与圆相切.的周长是否为定值?若是,求出定值;若不是,请说明理由.
18.(12分)己知,函数.
(1)若,解不等式;
(2)若函数,且存在使得成立,求实数的取值范围.
19.(12分)已知数列的前项和为,.
(1)求数列的通项公式;
(2)若,为数列的前项和.求证:.
20.(12分)已知函数,.
(1)求曲线在点处的切线方程;
(2)求函数的单调区间;
(3)判断函数的零点个数.
21.(12分)如图,在四棱锥中,平面ABCD平面PAD,,,,,E是PD的中点.
证明:;
设,点M在线段PC上且异面直线BM与CE所成角的余弦值为,求二面角的余弦值.
22.(10分)设函数,其中.
(Ⅰ)当为偶函数时,求函数的极值;
(Ⅱ)若函数在区间上有两个零点,求的取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
据题意以菱形对角线交点为坐标原点建立平面直角坐标系,用坐标表示出,再根据坐标形式下向量的数量积运算计算出结果.
【题目详解】
设与交于点,以为原点,的方向为轴,的方向为轴,建立直角坐标系,
则,,,,,
所以.
故选:B.
【答案点睛】
本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.
2、C
【答案解析】
①根据线性相关性与r的关系进行判断,
②根据相关指数的值的性质进行判断,
③根据方差关系进行判断,
④根据点满足回归直线方程,但点不一定就是这一组数据的中心点,而回归直线必过样本中心点,可进行判断.
【题目详解】
①若两个随机变量的线性相关性越强,则相关系数r的绝对值越接近于1,故①正确;
②用相关指数的值判断模型的拟合效果,越大,模型的拟合效果越好,故②错误;
③若统计数据的方差为1,则的方差为,故③正确;
④因为点满足回归直线方程,但点不一定就是这一组数据的中心点,即,不一定成立,而回归直线必过样本中心点,所以当,时,点 必满足线性回归方程 ;因此“满足线性回归方程”是“ ,”必要不充分条件.故 ④错误; 所以正确的命题有①③.
故选:C.
【答案点睛】
本题考查两个随机变量的相关性,拟合性检验,两个线性相关的变量间的方差的关系,以及两个变量的线性回归方程,注意理解每一个量的定义,属于基础题.
3、B
【答案解析】
先求出集合和它的补集,然后求得集合的解集,最后取它们的交集得出结果.
【题目详解】
对于集合A,,解得或,故.对于集合B,,解得.故.故选B.
【答案点睛】
本小题主要考查一元二次不等式的解法,考查对数不等式的解法,考查集合的补集和交集的运算.对于有两个根的一元二次不等式的解法是:先将二次项系数化为正数,且不等号的另一边化为,然后通过因式分解,求得对应的一元二次方程的两个根,再利用“大于在两边,小于在中间”来求得一元二次不等式的解集.
4、B
【答案解析】
作出不等式对应的平面区域,利用线性规划的知识,利用的几何意义即可得到结论.
【题目详解】
不等式组作出可行域如图:,,,
的几何意义是动点到的斜率,由图象可知的斜率为1,的斜率为:,
则的取值范围是:,,.
故选:.
【答案点睛】
本题主要考查线性规划的应用,根据目标函数的几何意义结合斜率公式是解决本题的关键.
5、D
【答案解析】
根据函数图像得到函数的一个解析式为,再根据平移法则得到答案.
【题目详解】
设函数解析式为,
根据图像:,,故,即,
,,取,得到,
函数向右平移个单位得到.
故选:.
【答案点睛】
本题考查了根据函数图像求函数解析式,三角函数平移,意在考查学生对于三角函数知识的综合应用.
6、D
【答案解析】
以BC的中点为坐标原点,建立直角坐标系,可得,设,运用向量的坐标表示,求得点A的轨迹,进而得到关于a的二次函数,可得最小值.
【题目详解】
以BC的中点为坐标原点,建立如图的直角坐标系,
可得,设,
由,
可得,即,
则
,
当时,的最小值为.
故选D.
【答案点睛】
本题考查向量数量积的坐标表示,考查转化思想和二次函数的值域解法,考查运算能力,属于中档题.
7、C
【答案解析】
先求得的渐近线方程,根据没有公共点,判断出渐近线斜率的取值范围,由此求得离心率的取值范围.
【题目详解】
双曲线的渐近线方程为,由于双曲线与双曲线没有公共点,所以双曲线的渐近线的斜率,所以双曲线的离心率.
故选:C
【答案点睛】
本小题主要考查双曲线的渐近线,考查双曲线离心率的取值范围的求法,属于基础题.
8、A
【答案解析】
先算出集合,再与集合B求交集即可.
【题目详解】
因为或.所以,又因为.
所以.
故选:A.
【答案点睛】
本题考查集合间的基本运算,涉及到解一元二次不等式、指数不等式,是一道容易题.
9、D
【答案解析】
化简z=(1+2i)(1+ai)=,再根据z∈R求解.
【题目详解】
因为z=(1+2i)(1+ai)=,
又因为z∈R,
所以,
解得a=-2.
故选:D
【答案点睛】
本题主要考查复数的运算及概念,还考查了运算求解的能力,属于基础题.
10、C
【答案解析】
将直线方程代入抛物线方程,根据根与系数的关系和抛物线的定义即可得出的值.
【题目详解】
F(1,0),故直线AB的方程为y=x﹣1,联立方程组,可得x2﹣6x+1=0,
设A(x1,y1),B(x2,y2),由根与系数的关系可知x1+x2=6,x1x2=1.
由抛物线的定义可知:|FA|=x1+1,|FB|=x2+1,
∴||FA|﹣|FB||=|x1﹣x2|=.
故选C.
【答案点睛】
本题考查了抛物线的定义,直线与抛物线的位置关系,属于中档题.
11、D
【答案解析】
根据面面垂直的判定定理可判断①;根据空间面面平行的判定定理可判断②;根据线面平行的判定定理可判断③;根据面面垂直的判定定理可判断④.
【题目详解】
对于①,若,,,,两平面相交,但不一定垂直,故①错误;
对于②,若,,则,故②正确;
对于③,若,,,当,则与不平行,故③错误;
对于④,若,,,则,故④正确;
故选:D
【答案点睛】
本题考查了线面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,属于基础题.
12、D
【答案解析】
甲乙丙三人陈述中都提到了甲的路线,由题意知这三句中一定有一个是正确另外两个错误的,再分情况讨论即可.
【题目详解】
若甲走的红门盘道徒步线路,则乙,丙描述中的甲的去向均错误,又三人的陈述都只对一半,则乙丙的另外两句话“丙走红门盘道徒步线路”,“乙走红门盘道徒步线路”正确,与“三人走的线路均不同”矛盾.
故甲的另一句“乙走桃花峪登山线路”正确,故丙的“乙走红门盘道徒步线路”错误,“甲走天烛峰登山线路”正确.乙的话中“甲走桃花峪登山线路”错误,“丙走红门盘道徒步线路”正确.
综上所述,甲走天烛峰登山线路,乙走桃花峪登山线路, 丙走红门盘道徒步线路
故选:D
【答案点睛】
本题主要考查了判断与推理的问题,重点是找到三人中都提到的内容进行分类讨论,属于基础题型.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
根据分段函数的解析式画出图像,再根据存在唯一的整数使得数形结合列出临界条件满足的关系式求解即可.
【题目详解】
解:函数,且
画出的图象如下:
因为,且存在唯一的整数使得,
故与在时无交点,
,得;
又,过定点