温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
湖南省
邵东县
一中
高考
数学四
试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.定义在上函数满足,且对任意的不相等的实数有成立,若关于x的不等式在上恒成立,则实数m的取值范围是( )
A. B. C. D.
2.设,是双曲线的左,右焦点,是坐标原点,过点作的一条渐近线的垂线,垂足为.若,则的离心率为( )
A. B. C. D.
3.关于函数,有下述三个结论:
①函数的一个周期为;
②函数在上单调递增;
③函数的值域为.
其中所有正确结论的编号是( )
A.①② B.② C.②③ D.③
4.如图,在矩形中的曲线分别是,的一部分,,,在矩形内随机取一点,若此点取自阴影部分的概率为,取自非阴影部分的概率为,则( )
A. B. C. D.大小关系不能确定
5.为计算, 设计了如图所示的程序框图,则空白框中应填入( )
A. B. C. D.
6.为了进一步提升驾驶人交通安全文明意识,驾考新规要求驾校学员必须到街道路口执勤站岗,协助交警劝导交通.现有甲、乙等5名驾校学员按要求分配到三个不同的路口站岗,每个路口至少一人,且甲、乙在同一路口的分配方案共有( )
A.12种 B.24种 C.36种 D.48种
7.已知等差数列的前项和为,若,,则数列的公差为( )
A. B. C. D.
8.若函数满足,且,则的最小值是( )
A. B. C. D.
9.已知 ,,且是的充分不必要条件,则的取值范围是( )
A. B. C. D.
10. “幻方”最早记载于我国公元前500年的春秋时期《大戴礼》中.“阶幻方”是由前个正整数组成的—个阶方阵,其各行各列及两条对角线所含的个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示).则“5阶幻方”的幻和为( )
A.75 B.65 C.55 D.45
11.一个几何体的三视图如图所示,正视图、侧视图和俯视图都是由一个边长为的正方形及正方形内一段圆弧组成,则这个几何体的表面积是( )
A. B. C. D.
12.若集合,则( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.数列满足,则,_____.若存在n∈N*使得成立,则实数λ的最小值为______
14.直线与抛物线交于两点,若,则弦的中点到直线的距离等于________.
15.给出下列等式:,,,…请从中归纳出第个等式:______.
16.已知函数,若关于的方程在定义域上有四个不同的解,则实数的取值范围是_______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在数列和等比数列中,,,.
(1)求数列及的通项公式;
(2)若,求数列的前n项和.
18.(12分)如图所示,在四棱锥中,底面是棱长为2的正方形,侧面为正三角形,且面面,分别为棱的中点.
(1)求证:平面;
(2)求二面角的正切值.
19.(12分)如图,在四棱锥中,底面为菱形,底面,.
(1)求证:平面;
(2)若直线与平面所成的角为,求平面与平面所成锐二面角的余弦值.
20.(12分)2019年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽奖方案.
方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.
方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.
(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;
(2)若某顾客获得抽奖机会.
①试分别计算他选择两种抽奖方案最终获得返金券的数学期望;
②为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?
21.(12分)已知△ABC的两个顶点A,B的坐标分别为(,0),(,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,|CP|=2,动点C的轨迹为曲线G.
(1)求曲线G的方程;
(2)设直线l与曲线G交于M,N两点,点D在曲线G上,是坐标原点,判断四边形OMDN的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.
22.(10分)已知函数.
(1)解不等式;
(2)记函数的最小值为,正实数、满足,求证:.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
结合题意可知是偶函数,且在单调递减,化简题目所给式子,建立不等式,结合导函数与原函数的单调性关系,构造新函数,计算最值,即可.
【题目详解】
结合题意可知为偶函数,且在单调递减,故
可以转换为
对应于恒成立,即
即对恒成立
即对恒成立
令,则上递增,在上递减,
所以
令,在上递减
所以.故,故选B.
【答案点睛】
本道题考查了函数的基本性质和导函数与原函数单调性关系,计算范围,可以转化为函数,结合导函数,计算最值,即可得出答案.
2、B
【答案解析】
设过点作的垂线,其方程为,联立方程,求得,,即,由,列出相应方程,求出离心率.
【题目详解】
解:不妨设过点作的垂线,其方程为,
由解得,,即,
由,所以有,
化简得,所以离心率.
故选:B.
【答案点睛】
本题主要考查双曲线的概念、直线与直线的位置关系等基础知识,考查运算求解、推理论证能力,属于中档题.
3、C
【答案解析】
①用周期函数的定义验证.②当时,,,再利用单调性判断.③根据平移变换,函数的值域等价于函数的值域,而,当时,再求值域.
【题目详解】
因为,故①错误;
当时,,所以,所以在上单调递增,故②正确;
函数的值域等价于函数的值域,易知,故当时,,故③正确.
故选:C.
【答案点睛】
本题考查三角函数的性质,还考查推理论证能力以及分类讨论思想,属于中档题.
4、B
【答案解析】
先用定积分求得阴影部分一半的面积,再根据几何概型概率公式可求得.
【题目详解】
根据题意,阴影部分的面积的一半为:,
于是此点取自阴影部分的概率为.
又,故.
故选B.
【答案点睛】
本题考查了几何概型,定积分的计算以及几何意义,属于中档题.
5、A
【答案解析】
根据程序框图输出的S的值即可得到空白框中应填入的内容.
【题目详解】
由程序框图的运行,可得:S=0,i=0
满足判断框内的条件,执行循环体,a=1,S=1,i=1
满足判断框内的条件,执行循环体,a=2×(﹣2),S=1+2×(﹣2),i=2
满足判断框内的条件,执行循环体,a=3×(﹣2)2,S=1+2×(﹣2)+3×(﹣2)2,i=3
…
观察规律可知:满足判断框内的条件,执行循环体,a=99×(﹣2)99,S=1+2×(﹣2)+3×(﹣2)2+…+1×(﹣2)99,i=1,此时,应该不满足判断框内的条件,退出循环,输出S的值,所以判断框中的条件应是i<1.
故选:A.
【答案点睛】
本题考查了当型循环结构,当型循环是先判断后执行,满足条件执行循环,不满足条件时算法结束,属于基础题.
6、C
【答案解析】
先将甲、乙两人看作一个整体,当作一个元素,再将这四个元素分成3个部分,每一个部分至少一个,再将这3部分分配到3个不同的路口,根据分步计数原理可得选项.
【题目详解】
把甲、乙两名交警看作一个整体,个人变成了4个元素,再把这4个元素分成3部分,每部分至少有1个人,共有种方法,再把这3部分分到3个不同的路口,有种方法,由分步计数原理,共有种方案。
故选:C.
【答案点睛】
本题主要考查排列与组合,常常运用捆绑法,插空法,先分组后分配等一些基本思想和方法解决问题,属于中档题.
7、D
【答案解析】
根据等差数列公式直接计算得到答案.
【题目详解】
依题意,,故,故,故,故选:D.
【答案点睛】
本题考查了等差数列的计算,意在考查学生的计算能力.
8、A
【答案解析】
由推导出,且,将所求代数式变形为,利用基本不等式求得的取值范围,再利用函数的单调性可得出其最小值.
【题目详解】
函数满足,,即,
,,,即,
,则,
由基本不等式得,当且仅当时,等号成立.
,
由于函数在区间上为增函数,
所以,当时,取得最小值.
故选:A.
【答案点睛】
本题考查代数式最值的计算,涉及对数运算性质、基本不等式以及函数单调性的应用,考查计算能力,属于中等题.
9、D
【答案解析】
“是的充分不必要条件”等价于“是的充分不必要条件”,即中变量取值的集合是中变量取值集合的真子集.
【题目详解】
由题意知:可化简为,,
所以中变量取值的集合是中变量取值集合的真子集,所以.
【答案点睛】
利用原命题与其逆否命题的等价性,对是的充分不必要条件进行命题转换,使问题易于求解.
10、B
【答案解析】
计算的和,然后除以,得到“5阶幻方”的幻和.
【题目详解】
依题意“5阶幻方”的幻和为,故选B.
【答案点睛】
本小题主要考查合情推理与演绎推理,考查等差数列前项和公式,属于基础题.
11、C
【答案解析】
画出直观图,由球的表面积公式求解即可
【题目详解】
这个几何体的直观图如图所示,它是由一个正方体中挖掉个球而形成的,所以它的表面积为.
故选:C
【答案点睛】
本题考查三视图以及几何体的表面积的计算,考查空间想象能力和运算求解能力.
12、A
【答案解析】
先确定集合中的元素,然后由交集定义求解.
【题目详解】
,.
故选:A.
【答案点睛】
本题考查求集合的交集运算,掌握交集定义是解题关键.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
利用“退一作差法”求得数列的通项公式,将不等式分离常数,利用商比较法求得的最小值,由此求得的取值范围,进而求得的最小值.
【题目详解】
当时
两式相减得
所以
当时,满足上式
综上所述
存在使得成立的充要条件为存在使得,
设,所以,即,
所以单调递增,的最小项,即有的最小值为.
故答案为:(1). (2).
【答案点睛】
本小题主要考查根据递推关系式求数列的通项公式,考查数列单调性的判断方法,考查不等式成立的存在性问题的求解策略,属于中档题.
14、
【答案解析】
由已知可知直线过抛物线的焦点,求出弦的中点到抛物线准线的距离,进一步得到弦的中点到直线的距离.
【题目详解】
解:如图,
直线过定点,,
而抛物线的焦点为,,
弦的中点到准线的距离为,
则弦的中点