温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
海南省
三亚市
天涯
三亚
华侨
学校
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知定义在上的函数满足,且在上是增函数,不等式对于恒成立,则的取值范围是
A. B. C. D.
2.已知椭圆+=1(a>b>0)与直线交于A,B两点,焦点F(0,-c),其中c为半焦距,若△ABF是直角三角形,则该椭圆的离心率为( )
A. B. C. D.
3.已知向量,,则与的夹角为( )
A. B. C. D.
4.直线与圆的位置关系是( )
A.相交 B.相切 C.相离 D.相交或相切
5.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,则集合中的元素共有 ( )
A.3个 B.4个 C.5个 D.6个
6.如图,圆的半径为,,是圆上的定点,,是圆上的动点, 点关于直线的对称点为,角的始边为射线,终边为射线,将表示为的函数,则在上的图像大致为( )
A. B. C. D.
7.已知函数在上可导且恒成立,则下列不等式中一定成立的是( )
A.、
B.、
C.、
D.、
8.设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为( )
A. B. C. D.1
9.将一块边长为的正方形薄铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形,且该容器的容积为,则的值为( )
A.6 B.8 C.10 D.12
10.若函数的图象如图所示,则的解析式可能是( )
A. B. C. D.
11.若,则函数在区间内单调递增的概率是( )
A. B. C. D.
12.过椭圆的左焦点的直线过的上顶点,且与椭圆相交于另一点,点在轴上的射影为,若,是坐标原点,则椭圆的离心率为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知双曲线的右准线与渐近线的交点在抛物线上,则实数的值为___________.
14.如图所示的流程图中,输出的值为______.
15.已知双曲线的左、右焦点分别为为双曲线上任一点,且的最小值为,则该双曲线的离心率是__________.
16.已知函数若关于的不等式的解集为,则实数的所有可能值之和为_______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)改革开放40年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需要不断加强.为了解某城市不同性别驾驶员的交通安全意识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各50人,进行问卷测评,所得分数的频率分布直方图如图所示.规定得分在80分以上为交通安全意识强.
安全意识强
安全意识不强
合计
男性
女性
合计
(Ⅰ)求的值,并估计该城市驾驶员交通安全意识强的概率;
(Ⅱ)已知交通安全意识强的样本中男女比例为4:1,完成2×2列联表,并判断有多大把握认为交通安全意识与性别有关;
(Ⅲ)在(Ⅱ)的条件下,从交通安全意识强的驾驶员中随机抽取2人,求抽到的女性人数的分布列及期望.
附:,其中
0.010
0.005
0.001
6.635
7.879
10.828
18.(12分)已知.
(1)求不等式的解集;
(2)若存在,使得成立,求实数的取值范围
19.(12分)在直角坐标系中,已知曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,射线的极坐标方程为,射线的极坐标方程为.
(Ⅰ)写出曲线的极坐标方程,并指出是何种曲线;
(Ⅱ)若射线与曲线交于两点,射线与曲线交于两点,求面积的取值范围.
20.(12分)已知椭圆的左、右焦点分别为,离心率为,为椭圆上一动点(异于左右顶点),面积的最大值为.
(1)求椭圆的方程;
(2)若直线与椭圆相交于点两点,问轴上是否存在点,使得是以为直角顶点的等腰直角三角形?若存在,求点的坐标;若不存在,请说明理由.
21.(12分)如图,在等腰梯形中,AD∥BC,,,,,分别为,,的中点,以为折痕将折起,使点到达点位置(平面).
(1)若为直线上任意一点,证明:MH∥平面;
(2)若直线与直线所成角为,求二面角的余弦值.
22.(10分)金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生.新生接待其实也是和社会沟通的一个平台.校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:
愿意
不愿意
男生
60
20
女士
40
40
(1)根据上表说明,能否有99%把握认为愿意参加新生接待工作与性别有关;
(2)现从参与问卷调查且愿意参加新生接待工作的学生中,采用按性别分层抽样的方法,选取10人.若从这10人中随机选取3人到火车站迎接新生,设选取的3人中女生人数为,写出的分布列,并求.
附:,其中.
0.05
0.01
0.001
3.841
6.635
10.828
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
根据奇偶性定义和性质可判断出函数为偶函数且在上是减函数,由此可将不等式化为;利用分离变量法可得,求得的最大值和的最小值即可得到结果.
【题目详解】
为定义在上的偶函数,图象关于轴对称
又在上是增函数 在上是减函数
,即
对于恒成立 在上恒成立
,即的取值范围为:
本题正确选项:
【答案点睛】
本题考查利用函数的奇偶性和单调性求解函数不等式的问题,涉及到恒成立问题的求解;解题关键是能够利用函数单调性将函数值的大小关系转化为自变量的大小关系,从而利用分离变量法来处理恒成立问题.
2、A
【答案解析】
联立直线与椭圆方程求出交点A,B两点,利用平面向量垂直的坐标表示得到关于的关系式,解方程求解即可.
【题目详解】
联立方程,解方程可得或,
不妨设A(0,a),B(-b,0),由题意可知,·=0,
因为,,
由平面向量垂直的坐标表示可得,,
因为,所以a2-c2=ac,
两边同时除以可得,,
解得e=或(舍去),
所以该椭圆的离心率为.
故选:A
【答案点睛】
本题考查椭圆方程及其性质、离心率的求解、平面向量垂直的坐标表示;考查运算求解能力和知识迁移能力;利用平面向量垂直的坐标表示得到关于的关系式是求解本题的关键;属于中档题、常考题型.
3、B
【答案解析】
由已知向量的坐标,利用平面向量的夹角公式,直接可求出结果.
【题目详解】
解:由题意得,设与的夹角为,
,
由于向量夹角范围为:,
∴.
故选:B.
【答案点睛】
本题考查利用平面向量的数量积求两向量的夹角,注意向量夹角的范围.
4、D
【答案解析】
由几何法求出圆心到直线的距离,再与半径作比较,由此可得出结论.
【题目详解】
解:由题意,圆的圆心为,半径,
∵圆心到直线的距离为,
,
,
故选:D.
【答案点睛】
本题主要考查直线与圆的位置关系,属于基础题.
5、A
【答案解析】
试题分析:,,所以,即集合中共有3个元素,故选A.
考点:集合的运算.
6、B
【答案解析】
根据图象分析变化过程中在关键位置及部分区域,即可排除错误选项,得到函数图象,即可求解.
【题目详解】
由题意,当时,P与A重合,则与B重合,
所以,故排除C,D选项;
当时,,由图象可知选B.
故选:B
【答案点睛】
本题主要考查三角函数的图像与性质,正确表示函数的表达式是解题的关键,属于中档题.
7、A
【答案解析】
设,利用导数和题设条件,得到,得出函数在R上单调递增,
得到,进而变形即可求解.
【题目详解】
由题意,设,则,
又由,所以,即函数在R上单调递增,
则,即,
变形可得.
故选:A.
【答案点睛】
本题主要考查了利用导数研究函数的单调性及其应用,以及利用单调性比较大小,其中解答中根据题意合理构造新函数,利用新函数的单调性求解是解答的关键,着重考查了构造思想,以及推理与计算能力,属于中档试题.
8、C
【答案解析】
试题分析:设,由题意,显然时不符合题意,故,则
,可得:
,当且仅当时取等号,故选C.
考点:1.抛物线的简单几何性质;2.均值不等式.
【方法点晴】本题主要考查的是向量在解析几何中的应用及抛物线标准方程方程,均值不等式的灵活运用,属于中档题.解题时一定要注意分析条件,根据条件,利用向量的运算可知,写出直线的斜率,注意均值不等式的使用,特别是要分析等号是否成立,否则易出问题.
9、D
【答案解析】
推导出,且,,,设中点为,则平面,由此能表示出该容器的体积,从而求出参数的值.
【题目详解】
解:如图(4),为该四棱锥的正视图,由图(3)可知,,且,由为等腰直角三角形可知,
,设中点为,则平面,∴,
∴,解得.
故选:D
【答案点睛】
本题考查三视图和锥体的体积计算公式的应用,属于中档题.
10、A
【答案解析】
由函数性质,结合特殊值验证,通过排除法求得结果.
【题目详解】
对于选项B, 为 奇函数可判断B错误;
对于选项C,当时, ,可判断C错误;
对于选项D, ,可知函数在第一象限的图象无增区间,故D错误;
故选:A.
【答案点睛】
本题考查已知函数的图象判断解析式问题,通过函数性质及特殊值利用排除法是解决本题的关键,难度一般.
11、B
【答案解析】函数在区间内单调递增, ,在恒成立, 在恒成立, , 函数在区间内单调递增的概率是,故选B.
12、D
【答案解析】
求得点的坐标,由,得出,利用向量的坐标运算得出点的坐标,代入椭圆的方程,可得出关于、、的齐次等式,进而可求得椭圆的离心率.
【题目详解】
由题意可得、.
由,得,则,即.
而,所以,所以点.
因为点在椭圆上,则,
整理可得,所以,所以.
即椭圆的离心率为
故选:D.
【答案点睛】
本题考查椭圆离心率的求解,解答的关键就是要得出、、的齐次等式,充分利用点在椭圆上这一条件,围绕求点的坐标来求解,考查计算能力,属于中等题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
求出双曲线的渐近线方程,右准线方程,得到交点坐标代入抛物线方程求解即可.
【题目详解】
解:双曲线的右准线,渐近线,
双曲线的右准线与渐近线的交点,
交点在抛物线上,
可得:,
解得.
故答案为.
【答案点睛】
本题考查双曲线的简单性质以及抛物线的简单性质的应用,是基本知识的考查,属于基础题.
14、4
【答案解析】
根据流程图依次运行直到,结束循环,输出n,得出结果.
【题目详解】
由题:,
,
,结束循环,
输出.
故答案为:4
【答案点睛】
此题考查根据程序框图运行结果求输出值,关键在于准确识别循环结构和判断框语句.
15、
【答案解析】
根据双曲线方程,设及,将代入双曲线方程并