温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
河北省
邯郸市
高考
仿真
模拟
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若函数的图象向右平移个单位长度得到函数的图象,若函数在区间上单调递增,则的最大值为( ).
A. B. C. D.
2.已知点(m,8)在幂函数的图象上,设,则( )
A.b<a<c B.a<b<c C.b<c<a D.a<c<b
3.命题“”的否定是( )
A. B.
C. D.
4.如图是一个算法流程图,则输出的结果是( )
A. B. C. D.
5.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是
A. B. C. D.
6.已知集合,,则
A. B.
C. D.
7.的展开式中的一次项系数为( )
A. B. C. D.
8.已知双曲线的一条渐近线与直线垂直,则双曲线的离心率等于( )
A. B. C. D.
9.已知复数z满足(i为虚数单位),则z的虚部为( )
A. B. C.1 D.
10.设一个正三棱柱,每条棱长都相等,一只蚂蚁从上底面的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为,则为( )
A. B.
C. D.
11.若实数x,y满足条件,目标函数,则z 的最大值为( )
A. B.1 C.2 D.0
12.已知复数,则的虚部是( )
A. B. C. D.1
二、填空题:本题共4小题,每小题5分,共20分。
13.对任意正整数,函数,若,则的取值范围是_________;若不等式恒成立,则的最大值为_________.
14.(5分)某膳食营养科研机构为研究牛蛙体内的维生素E和锌、硒等微量元素(这些元素可以延缓衰老,还能起到抗癌的效果)对人体的作用,现从只雌蛙和只雄蛙中任选只牛蛙进行抽样试验,则选出的只牛蛙中至少有只雄蛙的概率是____________.
15.某外商计划在个候选城市中投资个不同的项目,且在同一个城市投资的项目不超过个,则该外商不同的投资方案有____种.
16.已知数列是等比数列,,则__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知数列中,,前项和为,若对任意的,均有(是常数,且)成立,则称数列为“数列”.
(1)若数列为“数列”,求数列的前项和;
(2)若数列为“数列”,且为整数,试问:是否存在数列,使得对任意,成立?如果存在,求出这样数列的的所有可能值,如果不存在,请说明理由.
18.(12分)某早餐店对一款新口味的酸奶进行了一段时间试销,定价为元/瓶.酸奶在试销售期间足量供应,每天的销售数据按照,,,分组,得到如下频率分布直方图,以不同销量的频率估计概率.
从试销售期间任选三天,求其中至少有一天的酸奶销量大于瓶的概率;
试销结束后,这款酸奶正式上市,厂家只提供整箱批发:大箱每箱瓶,批发成本元;小箱每箱瓶,批发成本元.由于酸奶保质期短,当天未卖出的只能作废.该早餐店以试销售期间的销量作为参考,决定每天仅批发一箱(计算时每个分组取中间值作为代表,比如销量为时看作销量为瓶).
①设早餐店批发一大箱时,当天这款酸奶的利润为随机变量,批发一小箱时,当天这款酸奶的利润为随机变量,求和的分布列和数学期望;
②以利润作为决策依据,该早餐店应每天批发一大箱还是一小箱?
注:销售额=销量×定价;利润=销售额-批发成本.
19.(12分)在直角坐标系中,直线的参数方程为,(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)若点是直线的一点,过点作曲线的切线,切点为,求的最小值.
20.(12分)设抛物线的焦点为,准线为,为抛物线过焦点的弦,已知以为直径的圆与相切于点.
(1)求的值及圆的方程;
(2)设为上任意一点,过点作的切线,切点为,证明:.
21.(12分)已知,,,,证明:
(1);
(2).
22.(10分)设抛物线的焦点为,准线为,为过焦点且垂直于轴的抛物线的弦,已知以为直径的圆经过点.
(1)求的值及该圆的方程;
(2)设为上任意一点,过点作的切线,切点为,证明:.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
由题意利用函数的图象变换规律,正弦函数的单调性,求出的最大值.
【题目详解】
解:把函数的图象向右平移个单位长度得到函数的图象,
若函数在区间,上单调递增,
在区间,上,,,
则当最大时,,求得,
故选:C.
【答案点睛】
本题主要考查函数的图象变换规律,正弦函数的单调性,属于基础题.
2、B
【答案解析】
先利用幂函数的定义求出m的值,得到幂函数解析式为f(x)=x3,在R上单调递增,再利用幂函数f(x)的单调性,即可得到a,b,c的大小关系.
【题目详解】
由幂函数的定义可知,m﹣1=1,∴m=2,
∴点(2,8)在幂函数f(x)=xn上,
∴2n=8,∴n=3,
∴幂函数解析式为f(x)=x3,在R上单调递增,
∵,1<lnπ<3,n=3,
∴,
∴a<b<c,
故选:B.
【答案点睛】
本题主要考查了幂函数的性质,以及利用函数的单调性比较函数值大小,属于中档题.
3、D
【答案解析】
根据全称命题的否定是特称命题,对命题进行改写即可.
【题目详解】
全称命题的否定是特称命题,所以命题“,”的否定是:,.
故选D.
【答案点睛】
本题考查全称命题的否定,难度容易.
4、A
【答案解析】
执行程序框图,逐次计算,根据判断条件终止循环,即可求解,得到答案.
【题目详解】
由题意,执行上述的程序框图:
第1次循环:满足判断条件,;
第2次循环:满足判断条件,;
第3次循环:满足判断条件,;
不满足判断条件,输出计算结果,
故选A.
【答案点睛】
本题主要考查了循环结构的程序框图的结果的计算与输出,其中解答中执行程序框图,逐次计算,根据判断条件终止循环是解答的关键,着重考查了运算与求解能力,属于基础题.
5、A
【答案解析】
详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,
且俯视图应为对称图形
故俯视图为
故选A.
点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。
6、D
【答案解析】
因为,,
所以,,故选D.
7、B
【答案解析】
根据多项式乘法法则得出的一次项系数,然后由等差数列的前项和公式和组合数公式得出结论.
【题目详解】
由题意展开式中的一次项系数为.
故选:B.
【答案点睛】
本题考查二项式定理的应用,应用多项式乘法法则可得展开式中某项系数.同时本题考查了组合数公式.
8、B
【答案解析】
由于直线的斜率k,所以一条渐近线的斜率为,即,所以,选B.
9、D
【答案解析】
根据复数z满足,利用复数的除法求得,再根据复数的概念求解.
【题目详解】
因为复数z满足,
所以,
所以z的虚部为.
故选:D.
【答案点睛】
本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.
10、D
【答案解析】
由题意,设第次爬行后仍然在上底面的概率为.①若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;②若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,可得,根据求数列的通项知识可得选项.
【题目详解】
由题意,设第次爬行后仍然在上底面的概率为.
①若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;
②若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,
两种事件又是互斥的,∴,即,∴,
∴数列是以为公比的等比数列,而,所以,
∴当时,,
故选:D.
【答案点睛】
本题考查几何体中的概率问题,关键在于运用递推的知识,得出相邻的项的关系,这是常用的方法,属于难度题.
11、C
【答案解析】
画出可行域和目标函数,根据平移得到最大值.
【题目详解】
若实数x,y满足条件,目标函数
如图:
当时函数取最大值为
故答案选C
【答案点睛】
求线性目标函数的最值:
当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;
当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.
12、C
【答案解析】
化简复数,分子分母同时乘以,进而求得复数,再求出,由此得到虚部.
【题目详解】
,,所以的虚部为.
故选:C
【答案点睛】
本小题主要考查复数的乘法、除法运算,考查共轭复数的虚部,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
将代入求解即可;当为奇数时,,则转化为,设,由单调性求得的最小值;同理,当为偶数时,,则转化为,设,利用导函数求得的最小值,进而比较得到的最大值.
【题目详解】
由题,,解得.
当为奇数时,,由,得,
而函数为单调递增函数,所以,所以;
当为偶数时,,由,得,
设,
,单调递增,
,所以,
综上可知,若不等式恒成立,则的最大值为.
故答案为:(1);(2)
【答案点睛】
本题考查利用导函数求最值,考查分类讨论思想和转化思想.
14、
【答案解析】
记只雌蛙分别为,只雄蛙分别为,从中任选只牛蛙进行抽样试验,其基本事件为,共15个,选出的只牛蛙中至少有只雄蛙包含的基本事件为,共9个,故选出的只牛蛙中至少有只雄蛙的概率是.
15、60
【答案解析】
试题分析:每个城市投资1个项目有种,有一个城市投资2个有种,投资方案共种.
考点:排列组合.
16、
【答案解析】
根据等比数列通项公式,首先求得,然后求得.
【题目详解】
设的公比为,由,得,故.
故答案为:
【答案点睛】
本小题主要考查等比数列通项公式的基本量计算,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)(2)存在,
【答案解析】
由数列为“数列”可得,,,两式相减得,又,利用等比数列通项公式即可求出,进而求出;
由题意得,,,两式相减得,,
据此可得,当时,,进而可得,即数列为常数列,进而可得,结合,得到关于的不等式,再由时,且为整数即可求出符合题意的的所有值.
【题目详解】
因为数列为“数列”,
所以,故,
两式相减得,
在中令,则可得,故
所以,
所以数列是以为首项,以为公比的等比数列,
所以,因为,
所以.