分享
2023学年河北省邯郸市六校高考仿真模拟数学试卷(含解析).doc
下载文档

ID:35745

大小:1.82MB

页数:18页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 河北省 邯郸市 高考 仿真 模拟 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.若函数的图象向右平移个单位长度得到函数的图象,若函数在区间上单调递增,则的最大值为( ). A. B. C. D. 2.已知点(m,8)在幂函数的图象上,设,则( ) A.b<a<c B.a<b<c C.b<c<a D.a<c<b 3.命题“”的否定是( ) A. B. C. D. 4.如图是一个算法流程图,则输出的结果是(  ) A. B. C. D. 5.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 A. B. C. D. 6.已知集合,,则 A. B. C. D. 7.的展开式中的一次项系数为( ) A. B. C. D. 8.已知双曲线的一条渐近线与直线垂直,则双曲线的离心率等于( ) A. B. C. D. 9.已知复数z满足(i为虚数单位),则z的虚部为( ) A. B. C.1 D. 10.设一个正三棱柱,每条棱长都相等,一只蚂蚁从上底面的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为,则为( ) A. B. C. D. 11.若实数x,y满足条件,目标函数,则z 的最大值为( ) A. B.1 C.2 D.0 12.已知复数,则的虚部是( ) A. B. C. D.1 二、填空题:本题共4小题,每小题5分,共20分。 13.对任意正整数,函数,若,则的取值范围是_________;若不等式恒成立,则的最大值为_________. 14.(5分)某膳食营养科研机构为研究牛蛙体内的维生素E和锌、硒等微量元素(这些元素可以延缓衰老,还能起到抗癌的效果)对人体的作用,现从只雌蛙和只雄蛙中任选只牛蛙进行抽样试验,则选出的只牛蛙中至少有只雄蛙的概率是____________. 15.某外商计划在个候选城市中投资个不同的项目,且在同一个城市投资的项目不超过个,则该外商不同的投资方案有____种. 16.已知数列是等比数列,,则__________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知数列中,,前项和为,若对任意的,均有(是常数,且)成立,则称数列为“数列”. (1)若数列为“数列”,求数列的前项和; (2)若数列为“数列”,且为整数,试问:是否存在数列,使得对任意,成立?如果存在,求出这样数列的的所有可能值,如果不存在,请说明理由. 18.(12分)某早餐店对一款新口味的酸奶进行了一段时间试销,定价为元/瓶.酸奶在试销售期间足量供应,每天的销售数据按照,,,分组,得到如下频率分布直方图,以不同销量的频率估计概率. 从试销售期间任选三天,求其中至少有一天的酸奶销量大于瓶的概率; 试销结束后,这款酸奶正式上市,厂家只提供整箱批发:大箱每箱瓶,批发成本元;小箱每箱瓶,批发成本元.由于酸奶保质期短,当天未卖出的只能作废.该早餐店以试销售期间的销量作为参考,决定每天仅批发一箱(计算时每个分组取中间值作为代表,比如销量为时看作销量为瓶). ①设早餐店批发一大箱时,当天这款酸奶的利润为随机变量,批发一小箱时,当天这款酸奶的利润为随机变量,求和的分布列和数学期望; ②以利润作为决策依据,该早餐店应每天批发一大箱还是一小箱? 注:销售额=销量×定价;利润=销售额-批发成本. 19.(12分)在直角坐标系中,直线的参数方程为,(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为. (1)求直线的普通方程和曲线的直角坐标方程; (2)若点是直线的一点,过点作曲线的切线,切点为,求的最小值. 20.(12分)设抛物线的焦点为,准线为,为抛物线过焦点的弦,已知以为直径的圆与相切于点. (1)求的值及圆的方程; (2)设为上任意一点,过点作的切线,切点为,证明:. 21.(12分)已知,,,,证明: (1); (2). 22.(10分)设抛物线的焦点为,准线为,为过焦点且垂直于轴的抛物线的弦,已知以为直径的圆经过点. (1)求的值及该圆的方程; (2)设为上任意一点,过点作的切线,切点为,证明:. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 由题意利用函数的图象变换规律,正弦函数的单调性,求出的最大值. 【题目详解】 解:把函数的图象向右平移个单位长度得到函数的图象, 若函数在区间,上单调递增, 在区间,上,,, 则当最大时,,求得, 故选:C. 【答案点睛】 本题主要考查函数的图象变换规律,正弦函数的单调性,属于基础题. 2、B 【答案解析】 先利用幂函数的定义求出m的值,得到幂函数解析式为f(x)=x3,在R上单调递增,再利用幂函数f(x)的单调性,即可得到a,b,c的大小关系. 【题目详解】 由幂函数的定义可知,m﹣1=1,∴m=2, ∴点(2,8)在幂函数f(x)=xn上, ∴2n=8,∴n=3, ∴幂函数解析式为f(x)=x3,在R上单调递增, ∵,1<lnπ<3,n=3, ∴, ∴a<b<c, 故选:B. 【答案点睛】 本题主要考查了幂函数的性质,以及利用函数的单调性比较函数值大小,属于中档题. 3、D 【答案解析】 根据全称命题的否定是特称命题,对命题进行改写即可. 【题目详解】 全称命题的否定是特称命题,所以命题“,”的否定是:,. 故选D. 【答案点睛】 本题考查全称命题的否定,难度容易. 4、A 【答案解析】 执行程序框图,逐次计算,根据判断条件终止循环,即可求解,得到答案. 【题目详解】 由题意,执行上述的程序框图: 第1次循环:满足判断条件,; 第2次循环:满足判断条件,; 第3次循环:满足判断条件,; 不满足判断条件,输出计算结果, 故选A. 【答案点睛】 本题主要考查了循环结构的程序框图的结果的计算与输出,其中解答中执行程序框图,逐次计算,根据判断条件终止循环是解答的关键,着重考查了运算与求解能力,属于基础题. 5、A 【答案解析】 详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形, 且俯视图应为对称图形 故俯视图为 故选A. 点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。 6、D 【答案解析】 因为,, 所以,,故选D. 7、B 【答案解析】 根据多项式乘法法则得出的一次项系数,然后由等差数列的前项和公式和组合数公式得出结论. 【题目详解】 由题意展开式中的一次项系数为. 故选:B. 【答案点睛】 本题考查二项式定理的应用,应用多项式乘法法则可得展开式中某项系数.同时本题考查了组合数公式. 8、B 【答案解析】 由于直线的斜率k,所以一条渐近线的斜率为,即,所以,选B. 9、D 【答案解析】 根据复数z满足,利用复数的除法求得,再根据复数的概念求解. 【题目详解】 因为复数z满足, 所以, 所以z的虚部为. 故选:D. 【答案点睛】 本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题. 10、D 【答案解析】 由题意,设第次爬行后仍然在上底面的概率为.①若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;②若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,可得,根据求数列的通项知识可得选项. 【题目详解】 由题意,设第次爬行后仍然在上底面的概率为. ①若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为; ②若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是, 两种事件又是互斥的,∴,即,∴, ∴数列是以为公比的等比数列,而,所以, ∴当时,, 故选:D. 【答案点睛】 本题考查几何体中的概率问题,关键在于运用递推的知识,得出相邻的项的关系,这是常用的方法,属于难度题. 11、C 【答案解析】 画出可行域和目标函数,根据平移得到最大值. 【题目详解】 若实数x,y满足条件,目标函数 如图: 当时函数取最大值为 故答案选C 【答案点睛】 求线性目标函数的最值: 当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小; 当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大. 12、C 【答案解析】 化简复数,分子分母同时乘以,进而求得复数,再求出,由此得到虚部. 【题目详解】 ,,所以的虚部为. 故选:C 【答案点睛】 本小题主要考查复数的乘法、除法运算,考查共轭复数的虚部,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 将代入求解即可;当为奇数时,,则转化为,设,由单调性求得的最小值;同理,当为偶数时,,则转化为,设,利用导函数求得的最小值,进而比较得到的最大值. 【题目详解】 由题,,解得. 当为奇数时,,由,得, 而函数为单调递增函数,所以,所以; 当为偶数时,,由,得, 设, ,单调递增, ,所以, 综上可知,若不等式恒成立,则的最大值为. 故答案为:(1);(2) 【答案点睛】 本题考查利用导函数求最值,考查分类讨论思想和转化思想. 14、 【答案解析】 记只雌蛙分别为,只雄蛙分别为,从中任选只牛蛙进行抽样试验,其基本事件为,共15个,选出的只牛蛙中至少有只雄蛙包含的基本事件为,共9个,故选出的只牛蛙中至少有只雄蛙的概率是. 15、60 【答案解析】 试题分析:每个城市投资1个项目有种,有一个城市投资2个有种,投资方案共种. 考点:排列组合. 16、 【答案解析】 根据等比数列通项公式,首先求得,然后求得. 【题目详解】 设的公比为,由,得,故. 故答案为: 【答案点睛】 本小题主要考查等比数列通项公式的基本量计算,属于基础题. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1)(2)存在, 【答案解析】 由数列为“数列”可得,,,两式相减得,又,利用等比数列通项公式即可求出,进而求出; 由题意得,,,两式相减得,, 据此可得,当时,,进而可得,即数列为常数列,进而可得,结合,得到关于的不等式,再由时,且为整数即可求出符合题意的的所有值. 【题目详解】 因为数列为“数列”, 所以,故, 两式相减得, 在中令,则可得,故 所以, 所以数列是以为首项,以为公比的等比数列, 所以,因为, 所以.

此文档下载收益归作者所有

下载文档
猜你喜欢
你可能关注的文档
收起
展开