1原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司学科网(北京)股份有限公司重难点突破08圆锥曲线的垂直弦问题目录1、过椭圆的右焦点作两条互相垂直的弦,.若弦,的中点分别为,,那么直线恒过定点.2原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司学科网(北京)股份有限公司2、过椭圆的长轴上任意一点作两条互相垂直的弦,.若弦,的中点分别为,,那么直线恒过定点.3、过椭圆的短轴上任意一点作两条互相垂直的弦,.若弦,的中点分别为,,那么直线恒过定点.4、过椭圆内的任意一点作两条互相垂直的弦,.若弦,的中点分别为,,那么直线恒过定点.5、以为直角定点的椭圆内接直角三角形的斜边必过定点6、以上顶点为直角顶点的椭圆内接直角三角形的斜边必过定点,且定点在轴上.7、以右顶点为直角顶点的椭圆内接直角三角形的斜边必过定点,且定点在轴上.8、以为直角定点的抛物线内接直角三角形的斜边必过定点,9、以为直角定点的双曲线内接直角三角形的斜边必过定点题型一:椭圆内接直角三角形的斜边必过定点例1.(2023·辽宁沈阳·高二东北育才学校校考阶段练习)已知点,动点P满足:∠APB=2θ,且|PA||PB|cos2θ=1.(P不在线段AB上)(1)求动点P的轨迹C的方程;(2)过椭圆的上顶点作互相垂直的两条直线分别交椭圆于另外一点P、Q,试问直线PQ是否经过定点,若是,求出定点坐标;若不是,说明理由.例2.(2023·全国·高三专题练习)已知椭圆C的两个焦点分别为,,短轴长为2.(1)求椭圆C的标准方程及离心率;(2)M,D分别为椭圆C的左、右顶点,过M点作两条互相垂直的直线MA,MB交椭圆于A,B两点,直线AB是否过定点?并求出面积的最大值.3原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司学科网(北京)股份有限公司例3.(2023·云南曲靖·高三校联考阶段练习)已知为圆上一动点,过点作轴的垂线段为垂足,若点满足.(1)求点的轨迹方程;(2)设点的轨迹为曲线,过点作曲线的两条互相垂直的弦,两条弦的中点分别为,过点作直线的垂线,垂足为点,是否存在定点,使得为定值?若存在,求出点的坐标;若不存在,请说明理由.变式1.(2023·上海青浦·统考一模)在平面直角坐标系xOy中,已知椭圆,过右焦点作两条互相垂直的弦AB,CD,设AB,CD中点分别为,.(1)写出椭圆右焦点的坐标及该椭圆的离心率;(2)证明:直线MN必过定点,并求出此定点坐标;(3)若弦AB,CD的斜率均存在,...