1原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司学科网(北京)股份有限公司重难点突破03三角形中的范围与最值问题目录2原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司学科网(北京)股份有限公司1、在解三角形专题中,求其“范围与最值”的问题,一直都是这部分内容的重点、难点.解决这类问题,通常有下列五种解题技巧:(1)利用基本不等式求范围或最值;(2)利用三角函数求范围或最值;(3)利用三角形中的不等关系求范围或最值;(4)根据三角形解的个数求范围或最值;(5)利用二次函数求范围或最值.要建立所求量(式子)与已知角或边的关系,然后把角或边作为自变量,所求量(式子)的值作为函数值,转化为函数关系,将原问题转化为求函数的值域问题.这里要利用条件中的范围限制,以及三角形自身范围限制,要尽量把角或边的范围(也就是函数的定义域)找完善,避免结果的范围过大.2、解三角形中的范围与最值问题常见题型:(1)求角的最值;(2)求边和周长的最值及范围;(3)求面积的最值和范围.题型一:周长问题例1.(2023·贵州贵阳·校联考模拟预测)记内角A,B,C的对边分别为a,b,c,且.(1)求C;(2)若为锐角三角形,,求周长范围.【解析】(1)在中,由射影定理得,则题述条件化简为,由余弦定理得.可得所以.(2)在中,由正弦定理得,则周长,3原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司学科网(北京)股份有限公司因为,则,因为为锐角三角形,,则得,故.例2.(2023·甘肃武威·高三武威第六中学校考阶段练习)在锐角△ABC中,,,(1)求角A;(2)求△ABC的周长l的范围.【解析】(1) ,,所以,所以,所以,因为,所以,,所以.(2),所以,所以,,所以因为△ABC是锐角三角形,且,所以,解得,所以,所以,所以.4原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司学科网(北京)股份有限公司例3.(2023·全国·高三专题练习)在①;②;③;在这三个条件中任选一个,补充在下面问题中,并作答.在锐角中,内角、、,的对边分别是、、,且______(1)求角的大小;(2)若,求周长的范围.【解析】(1)选①,由可得,,则,可得,;选②,由可得,即,即,,则,故,;选③,由及正弦定理可得,、,则,所以,,故,,,因此,.(2)由正弦定理可得,则,,,因为为锐角三角形,则,可得,所以,,则,故.变式1...