分享
第2章 直线和圆的方程 知识梳理-2022-2023学年高二数学上学期期中挑战满分冲刺卷(人教A版2019选择性必修第一册浙江专用).docx
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
第2章 直线和圆的方程 知识梳理-2022-2023学年高二数学上学期期中挑战满分冲刺卷人教A版2019选择性必修第一册,浙江专用 直线 方程 知识 梳理 2022 2023 学年 数学 学期 期中
第2章 直线和圆的方程 知识梳理 一、直线的倾斜角、斜率与方程 1.直线的倾斜角 (1)定义:当直线l与x轴相交时,我们以x轴为基准,x轴正向与直线l向上的方向之间所成的角α叫做直线l的倾斜角; (2)规定:当直线l与x轴平行或重合时,规定它的倾斜角为0°; (3)范围:直线的倾斜角α的取值范围是{α|0°≤α<180°}. 2.直线的斜率 (1)定义:我们把一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k表示,即k=tan__α. (2)计算公式 ①经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率k=. ②设P1(x1,y1),P2(x2,y2)(其中x1≠x2)是直线l上的两点,则向量=(x2-x1,y2-y1)以及与它平行的向量都是直线的方向向量.若直线l的斜率为k,它的一个方向向量的坐标为(x,y),则k=. 3.直线方程的五种形式 名称 几何条件 方程 适用条件 斜截式 纵截距、斜率 y=kx+b 与x轴不垂直的直线 点斜式 过一点、斜率 y-y0=k(x-x0) 两点式 过两点 = 与两坐标轴均不垂直的直线 截距式 纵、横截距 +=1 不过原点且与两坐标轴均不垂直的直线 一般式 Ax+By+C=0 (A2+B2≠0) 所有直线 常用结论; 1.直线的倾斜角α和斜率k之间的对应关系: α 0 0<α< <α<π k 0 k>0 不存在 k<0 2.截距和距离的不同之处 “截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数. 二、直线的交点坐标与距离公式 1.两条直线平行与垂直的判定 (1)两条直线平行 对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1∥l2⇔k1=k2.特别地,当直线l1,l2的斜率都不存在时,l1与l2平行. (2)两条直线垂直 如果两条直线l1,l2斜率都存在,设为k1,k2,则l1⊥l2⇔k1·k2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 2.直线的交点与直线的方程组成的方程组的解的关系 (1)两直线的交点 点P的坐标既满足直线l1的方程A1x+B1y+C1=0,也满足直线l2的方程A2x+B2y+C2=0,即点P的坐标是方程组的解,解这个方程组就可以得到这两条直线的交点坐标. (2)两直线的位置关系 方程组的解 一组 无数组 无解 直线l1与l2的公共点的个数 一个 无数个 零个 直线l1与l2的位置关系 相交 重合 平行 3.距离公式 (1)两点间的距离公式 平面上任意两点P1(x1,y1),P2(x2,y2)间的距离公式为|P1P2|=. 特别地,原点O(0,0)与任一点P(x,y)的距离|OP|=. (2)点到直线的距离公式 平面上任意一点P0(x0,y0)到直线l:Ax+By+C=0的距离d=. (3)两条平行线间的距离公式 一般地,两条平行直线l1:Ax+By+C1=0,l2:Ax+By+C2=0间的距离d=. 4.对称问题 (1)点P(x0,y0)关于点A(a,b)的对称点为P′(2a-x0,2b-y0). (2)设点P(x0,y0)关于直线y=kx+b的对称点为P′(x′,y′),则有可求出x′,y′. 常用结论: 1.“直线A1x+B1y+C1=0,A2x+B2y+C2=0平行”的充要条件是“A1B2=A2B1且A1C2≠A2C1”,“两直线垂直”的充要条件是“A1A2+B1B2”=0. 2.讨论两直线的位置关系时应考虑直线的斜率是否存在. 三、圆的方程 1.圆的定义和圆的方程 定义 圆是平面上到定点的距离等于定长的点的集合 方 程 标准 (x-a)2+(y-b)2=r2(r>0) 圆心C(a,b) 半径为r 一般 x2+y2+Dx+Ey+F=0 (D2+E2-4F>0) 充要条件:D2+E2-4F>0 圆心坐标: 半径r= 2.点与圆的位置关系 平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系: (1)|MC|>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外; (2)|MC|=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上; (3)|MC|<r⇔M在圆内,即(x0-a)2+(y0-b)2<r2⇔M在圆内. 常用结论: 1.圆心在坐标原点,半径为r的圆的方程为x2+y2=r2. 2.以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)·(x-x2)+(y-y1)(y-y2)=0. 四、直线与圆、圆与圆的位置关系 1.直线与圆的位置关系 设圆C:(x-a)2+(y-b)2=r2,直线l:Ax+By+C=0,圆心C(a,b)到直线l的距离为d,由消去y(或x),得到关于x(或y)的一元二次方程,其判别式为Δ. 位置关系 相离 相切 相交 图形 量化 方程观点 Δ<0 Δ=0 Δ>0 几何观点 d>r d=r d<r 2.圆与圆的位置关系 已知两圆C1:(x-x1)2+(y-y1)2=r, C2:(x-x2)2+(y-y2)2=r, 则圆心距d=|C1C2|=. 则两圆C1,C2有以下位置关系: 位置关系 外离 内含 相交 内切 外切 圆心距 与半径 的关系 d>r1+r2 d<|r1-r2| |r1-2|<d<r1+r2 d=|r1-r2| d=r1+r2 图示 公切线条数 4 0 2 1 3 常用结论: 1.圆的切线方程常用结论 (1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2. (2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2. (3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2. 2.直线被圆截得的弦长的求法 (1)几何法:运用弦心距d、半径r和弦长的一半构成的直角三角形,计算弦长|AB|=2. (2)代数法:设直线y=kx+m与圆x2+y2+Dx+Ey+F=0相交于点M,N,将直线方程代入圆的方程中,消去y,得关于x的一元二次方程,求出xM+xN和xM·xN,则|MN|=·. 第 7 页 共 7 页 原创精品资源学科网独家享有版权,侵权必究! 学科网(北京)股份有限公司

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开