温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
第3章
圆锥曲线的方程
知识梳理-2022-2023学年高二数学上学期期中挑战满分冲刺卷人教A版2019选择性必修第一册,浙江专用
圆锥曲线
方程
知识
梳理
2022
2023
学年
数学
学期
第3章 圆锥曲线的方程 知识梳理
一 、椭圆
1.椭圆的定义
平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距,焦距的一半称为半焦距.
其数学表达式:集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:
(1)若a>c,则集合P为椭圆;
(2)若a=c,则集合P为线段;
(3)若a<c,则集合P为空集.
2.椭圆的标准方程和几何性质
标准方程
+=1(a>b>0)
+=1(a>b>0)
图形
性质
范围
-a≤x≤a
-b≤y≤b
-b≤x≤b
-a≤y≤a
对称性
对称轴:坐标轴;对称中心:原点
顶点
A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)
A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)
轴
长轴A1A2的长为2a;短轴B1B2的长为2b
焦距
|F1F2|=2c
离心率
e=∈(0,1)
a,b,c的关系
c2=a2-b2
常用结论:
1.若点P在椭圆上,F为椭圆的一个焦点,则
(1)b≤|OP|≤a;
(2)a-c≤|PF|≤a+c.
2.焦点三角形:椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫作焦点三角形,r1=|PF1|,r2=|PF2|,∠F1PF2=θ,△PF1F2的面积为S,则在椭圆+=1(a>b>0)中:
(1)当r1=r2时,即点P的位置为短轴端点时,θ最大;
(2)S=b2tan =c|y0|,当|y0|=b时,即点P的位置为短轴端点时,S取最大值,最大值为bc.
3.焦点弦(过焦点的弦):焦点弦中通径(垂直于长轴的焦点弦)最短,弦长lmin=.
4.AB为椭圆+=1(a>b>0)的弦,A(x1,y1),B(x2,y2),弦中点M(x0,y0),则直线AB的斜率kAB=-.
二、双曲线
1.双曲线的定义
平面内与两个定点F1,F2的距离差的绝对值等于非零常数(小于|F1F2|)的点的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫做双曲线的焦距.其数学表达式:集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.
(1)若a<c,则集合P为双曲线;
(2)若a=c,则集合P为两条射线;
(3)若a>c,则集合P为空集.
2.双曲线的标准方程和几何性质
标准方程
-=1(a>0,b>0)
-=1(a>0,b>0)
图 形
性 质
范围
x≥a或x≤-a,y∈R
x∈R,y≤-a或y≥a
对称性
对称轴:坐标轴;对称中心:原点
顶点
A1(-a,0),A2(a,0)
A1(0,-a),A2(0,a)
渐近线
y=±x
y=±x
离心率
e=,e∈(1,+∞)
实虚轴
线段A1A2叫做双曲线的实轴,它的长度|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长度|B1B2|=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长
a,b,c的关系
c2=a2+b2
常用结论:
1.过双曲线的一个焦点且与实轴垂直的弦的长为.
2.离心率e===.
3.等轴双曲线的渐近线互相垂直,离心率等于.
4.若渐近线方程为y=±x,则双曲线方程可设为-=λ(λ≠0).
5.双曲线的焦点到渐近线的距离为b.
6.若P是双曲线右支上一点,F1,F2分别为双曲线的左、右焦点,则|PF1|min=c+a,|PF2|min=c-a.
7.焦点三角形的面积:P为双曲线上的点,F1,F2为双曲线的两个焦点,且∠F1PF2=θ,则△F1PF2的面积为.
三、抛物线
1.抛物线的定义
(1)平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.
(2)其数学表达式:{M||MF|=d}(d为点M到准线l的距离).
2.抛物线的标准方程与几何性质
图形
标准方程
y2=2px (p>0)
y2=-2px (p>0)
x2=2py (p>0)
x2=-2py (p>0)
p的几何意义:焦点F到准线l的距离
性
质
顶点
O(0,0)
对称轴
y=0
x=0
焦点
F
F
F
F
离心率
e=1
准线方程
x=-
x=
y=-
y=
范围
x≥0,y∈R
x≤0,y∈R
y≥0,x∈R
y≤0,x∈R
开口方向
向右
向左
向上
向下
常用结论:
1.通径:过焦点且垂直于对称轴的弦长等于2p,通径是过焦点最短的弦.
2.抛物线y2=2px(p>0)上一点P(x0,y0)到焦点F的距离|PF|=x0+,也称为抛物线的焦半径.
第 6 页 共 6 页
原创精品资源学科网独家享有版权,侵权必究!
学科网(北京)股份有限公司