温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
浙江省
台州市
重点中学
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设函数,若在上有且仅有5个零点,则的取值范围为( )
A. B. C. D.
2.设a,b都是不等于1的正数,则“”是“”的( )
A.充要条件 B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件
3.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“乐”不排在第一节,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有( )种.
A.408 B.120 C.156 D.240
4.函数的一个零点在区间内,则实数a的取值范围是( )
A. B. C. D.
5. 若数列满足且,则使的的值为( )
A. B. C. D.
6.已知与函数和都相切,则不等式组所确定的平面区域在内的面积为( )
A. B. C. D.
7.已知复数满足:,则的共轭复数为( )
A. B. C. D.
8.函数在的图像大致为
A. B. C. D.
9.陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的《帝京景物略》一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为( )
A. B.
C. D.
10.设(是虚数单位),则( )
A. B.1 C.2 D.
11.在区间上随机取一个实数,使直线与圆相交的概率为( )
A. B. C. D.
12.已知复数,(为虚数单位),若为纯虚数,则( )
A. B.2 C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知数列满足对任意,,则数列的通项公式__________.
14.已知,若,则a的取值范围是______.
15.已知为等比数列,是它的前项和.若,且与的等差中项为,则__________.
16.设,则______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在①;②;③ 这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.
在中,内角A,B,C的对边分别为a,b,c,且满足________________,,求的面积.
18.(12分)某公园有一块边长为3百米的正三角形空地,拟将它分割成面积相等的三个区域,用来种植三种花卉.方案是:先建造一条直道将分成面积之比为的两部分(点D,E分别在边,上);再取的中点M,建造直道(如图).设,,(单位:百米).
(1)分别求,关于x的函数关系式;
(2)试确定点D的位置,使两条直道的长度之和最小,并求出最小值.
19.(12分)在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程为(t为参数),曲线C的极坐标方程为ρ=4sin(θ+).
(1)求直线l的普通方程与曲线C的直角坐标方程;
(2)若直线l与曲线C交于M,N两点,求△MON的面积.
20.(12分)如图,在直棱柱中,底面为菱形,,,与相交于点,与相交于点.
(1)求证:平面;
(2)求直线与平面所成的角的正弦值.
21.(12分)设椭圆E:(a,b>0)过M(2,) ,N(,1)两点,O为坐标原点,
(1)求椭圆E的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,若不存在说明理由.
22.(10分)在三棱柱中,四边形是菱形,,,,,点M、N分别是、的中点,且.
(1)求证:平面平面;
(2)求四棱锥的体积.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
由求出范围,结合正弦函数的图象零点特征,建立不等量关系,即可求解.
【题目详解】
当时,,
∵在上有且仅有5个零点,
∴,∴.
故选:A.
【答案点睛】
本题考查正弦型函数的性质,整体代换是解题的关键,属于基础题.
2、C
【答案解析】
根据对数函数以及指数函数的性质求解a,b的范围,再利用充分必要条件的定义判断即可.
【题目详解】
由“”,得,
得或或,
即或或,
由,得,
故“”是“”的必要不充分条件,
故选C.
【答案点睛】
本题考查必要条件、充分条件及充分必要条件的判断方法,考查指数,对数不等式的解法,是基础题.
3、A
【答案解析】
利用间接法求解,首先对6门课程全排列,减去“乐”排在第一节的情况,再减去“射”和“御”两门课程相邻的情况,最后还需加上“乐”排在第一节,且“射”和“御”两门课程相邻的情况;
【题目详解】
解:根据题意,首先不做任何考虑直接全排列则有(种),
当“乐”排在第一节有(种),
当“射”和“御”两门课程相邻时有(种),
当“乐”排在第一节,且“射”和“御”两门课程相邻时有(种),
则满足“乐”不排在第一节,“射”和“御”两门课程不相邻的排法有(种),
故选:.
【答案点睛】
本题考查排列、组合的应用,注意“乐”的排列对“射”和“御”两门课程相邻的影响,属于中档题.
4、C
【答案解析】
显然函数在区间内连续,由的一个零点在区间内,则,即可求解.
【题目详解】
由题,显然函数在区间内连续,因为的一个零点在区间内,所以,即,解得,
故选:C
【答案点睛】
本题考查零点存在性定理的应用,属于基础题.
5、C
【答案解析】
因为,所以是等差数列,且公差,则,所以由题设可得,则,应选答案C.
6、B
【答案解析】
根据直线与和都相切,求得的值,由此画出不等式组所表示的平面区域以及圆,由此求得正确选项.
【题目详解】
.设直线与相切于点,斜率为,所以切线方程为,化简得①.令,解得,,所以切线方程为,化简得②.由①②对比系数得,化简得③.构造函数,,所以在上递减,在上递增,所以在处取得极小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切线方程为.即.不等式组即,画出其对应的区域如下图所示.圆可化为,圆心为.而方程组的解也是.画出图像如下图所示,不等式组所确定的平面区域在内的部分如下图阴影部分所示.直线的斜率为,直线的斜率为.所以,所以,而圆的半径为,所以阴影部分的面积是.
故选:B
【答案点睛】
本小题主要考查根据公共切线求参数,考查不等式组表示区域的画法,考查圆的方程,考查两条直线夹角的计算,考查扇形面积公式,考查数形结合的数学思想方法,考查分析思考与解决问题的能力,属于难题.
7、B
【答案解析】
转化,为,利用复数的除法化简,即得解
【题目详解】
复数满足:
所以
故选:B
【答案点睛】
本题考查了复数的除法和复数的基本概念,考查了学生概念理解,数学运算的能力,属于基础题.
8、B
【答案解析】
由分子、分母的奇偶性,易于确定函数为奇函数,由的近似值即可得出结果.
【题目详解】
设,则,所以是奇函数,图象关于原点成中心对称,排除选项C.又排除选项D;,排除选项A,故选B.
【答案点睛】
本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.
9、C
【答案解析】
根据三视图可知,该几何体是由两个圆锥和一个圆柱构成,由此计算出陀螺的表面积.
【题目详解】
最上面圆锥的母线长为,底面周长为,侧面积为,下面圆锥的母线长为,底面周长为,侧面积为,没被挡住的部分面积为,中间圆柱的侧面积为.故表面积为,故选C.
【答案点睛】
本小题主要考查中国古代数学文化,考查三视图还原为原图,考查几何体表面积的计算,属于基础题.
10、A
【答案解析】
先利用复数代数形式的四则运算法则求出,即可根据复数的模计算公式求出.
【题目详解】
∵,∴.
故选:A.
【答案点睛】
本题主要考查复数代数形式的四则运算法则的应用,以及复数的模计算公式的应用,
属于容易题.
11、D
【答案解析】
利用直线与圆相交求出实数的取值范围,然后利用几何概型的概率公式可求得所求事件的概率.
【题目详解】
由于直线与圆相交,则,解得.
因此,所求概率为.
故选:D.
【答案点睛】
本题考查几何概型概率的计算,同时也考查了利用直线与圆相交求参数,考查计算能力,属于基础题.
12、C
【答案解析】
把代入,利用复数代数形式的除法运算化简,由实部为0且虚部不为0求解即可.
【题目详解】
∵,
∴,
∵为纯虚数,
∴,解得.
故选C.
【答案点睛】
本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
利用累加法求得数列的通项公式,由此求得的通项公式.
【题目详解】
由题,
所以
故答案为:
【答案点睛】
本小题主要考查累加法求数列的通项公式,属于基础题.
14、
【答案解析】
函数等价为,由二次函数的单调性可得在R上递增,即为,可得a的不等式,解不等式即可得到所求范围.
【题目详解】
,等价为,
且时,递增,时,递增,
且,在处函数连续,
可得在R上递增,
即为,可得,解得,
即a的取值范围是.
故答案为:.
【答案点睛】
本题考查分段函数的单调性的判断和运用:解不等式,考查转化思想和运算能力,属于中档题.
15、
【答案解析】
设等比数列的公比为,根据题意求出和的值,进而可求得和的值,利用等比数列求和公式可求得的值.
【题目详解】
由等比数列的性质可得,,
由于与的等差中项为,则,则,,
,,,
因此,.
故答案为:.
【答案点睛】
本题考查等比数列求和,解答的关键就是等比数列的公比,考查计算能力,属于基础题.
16、121
【答案解析】
在所给的等式中令,,令,可得2个等式,再根据所得的2个等式即可解得所求.
【题目详解】
令,得,令,得,两式相加,得,所以.
故答案为:.
【答案点睛】
本题主要考查二项式定理的应用,考查学生分析问题的能力,属于基础题,难度较易.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、横线处任填一个都可以,面积为.
【答案解析】
无论选哪一个,都先由正弦定理化边为角后,由诱导公式,展开后,可求得角,再由余弦定理求得,从而易求得三角形面积.
【题目详解】
在横线上填写“”.
解:由正弦定理,得.
由,
得.
由,得.
所以.
又(若,则这与矛盾),
所以.
又,得.
由余弦定理及,
得,
即.将代入,解得.
所以.
在横线上填写“”.
解:由及正弦定理,得
.
又,
所以有.
因为,所以.
从而有.又,
所以
由余弦定理及,
得
即.将代入,
解得.
所以.
在横线上填写“”
解:由正弦定理,得.
由,得,
所以
由二倍角公式,得.
由