分享
2023学年甘肃省张掖市临泽县一中高考数学二模试卷(含解析).doc
下载文档

ID:35532

大小:1.84MB

页数:20页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 甘肃省 张掖市 临泽县 一中 高考 数学 试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为.给出下列四个结论: ①曲线有四条对称轴; ②曲线上的点到原点的最大距离为; ③曲线第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为; ④四叶草面积小于. 其中,所有正确结论的序号是( ) A.①② B.①③ C.①③④ D.①②④ 2.在满足,的实数对中,使得成立的正整数的最大值为( ) A.5 B.6 C.7 D.9 3.已知等差数列的前n项和为,且,则( ) A.4 B.8 C.16 D.2 4.如图网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则该几何体的所有棱中最长棱的长度为( ) A. B. C. D. 5.设为的两个零点,且的最小值为1,则( ) A. B. C. D. 6.在平面直角坐标系中,已知是圆上两个动点,且满足,设到直线的距离之和的最大值为,若数列的前项和恒成立,则实数的取值范围是( ) A. B. C. D. 7.在区间上随机取一个实数,使直线与圆相交的概率为( ) A. B. C. D. 8.设复数满足,在复平面内对应的点的坐标为则(  ) A. B. C. D. 9.如图,设为内一点,且,则与的面积之比为 A. B. C. D. 10.函数的图象大致是(  ) A. B. C. D. 11.定义域为R的偶函数满足任意,有,且当时,.若函数至少有三个零点,则的取值范围是( ) A. B. C. D. 12.已知椭圆的焦点分别为,,其中焦点与抛物线的焦点重合,且椭圆与抛物线的两个交点连线正好过点,则椭圆的离心率为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.在平面直角坐标系中,双曲线的右准线与渐近线的交点在抛物线上,则实数的值为________. 14.给出以下式子: ①tan25°+tan35°tan25°tan35°; ②2(sin35°cos25°+cos35°cos65°); ③ 其中,结果为的式子的序号是_____. 15.如图,养殖公司欲在某湖边依托互相垂直的湖岸线、围成一个三角形养殖区.为了便于管理,在线段之间有一观察站点,到直线,的距离分别为8百米、1百米,则观察点到点、距离之和的最小值为______________百米. 16.如图所示,边长为1的正三角形中,点,分别在线段,上,将沿线段进行翻折,得到右图所示的图形,翻折后的点在线段上,则线段的最小值为_______. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,直线的极坐标方程为. (1)求直线的直角坐标方程; (2)求曲线上的点到直线距离的最小值和最大值. 18.(12分)已知函数. (1)讨论的单调性并指出相应单调区间; (2)若,设是函数的两个极值点,若,且恒成立,求实数k的取值范围. 19.(12分)已知点P在抛物线上,且点P的横坐标为2,以P为圆心,为半径的圆(O为原点),与抛物线C的准线交于M,N两点,且. (1)求抛物线C的方程; (2)若抛物线的准线与y轴的交点为H.过抛物线焦点F的直线l与抛物线C交于A,B,且,求的值. 20.(12分)在平面直角坐标系xOy中,曲线l的参数方程为(为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为r=4sinq. (1)求曲线C的普通方程; (2)求曲线l和曲线C的公共点的极坐标. 21.(12分)如图,四棱锥中,底面ABCD为菱形,平面ABCD,BD交AC于点E,F是线段PC中点,G为线段EC中点. Ⅰ求证:平面PBD; Ⅱ求证:. 22.(10分)已知曲线的参数方程为为参数, 曲线的参数方程为为参数). (1)求与的普通方程; (2)若与相交于,两点,且,求的值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 ①利用之间的代换判断出对称轴的条数;②利用基本不等式求解出到原点的距离最大值;③将面积转化为的关系式,然后根据基本不等式求解出最大值;④根据满足的不等式判断出四叶草与对应圆的关系,从而判断出面积是否小于. 【题目详解】 ①:当变为时, 不变,所以四叶草图象关于轴对称; 当变为时,不变,所以四叶草图象关于轴对称; 当变为时,不变,所以四叶草图象关于轴对称; 当变为时,不变,所以四叶草图象关于轴对称; 综上可知:有四条对称轴,故正确; ②:因为,所以, 所以,所以,取等号时, 所以最大距离为,故错误; ③:设任意一点,所以围成的矩形面积为, 因为,所以,所以, 取等号时,所以围成矩形面积的最大值为,故正确; ④:由②可知,所以四叶草包含在圆的内部, 因为圆的面积为:,所以四叶草的面积小于,故正确. 故选:C. 【答案点睛】 本题考查曲线与方程的综合运用,其中涉及到曲线的对称性分析以及基本不等式的运用,难度较难.分析方程所表示曲线的对称性,可通过替换方程中去分析证明. 2、A 【答案解析】 由题可知:,且可得,构造函数求导,通过导函数求出的单调性,结合图像得出,即得出, 从而得出的最大值. 【题目详解】 因为, 则,即 整理得,令, 设, 则, 令,则,令,则, 故在上单调递增,在上单调递减,则, 因为,, 由题可知:时,则,所以, 所以, 当无限接近时,满足条件,所以, 所以要使得 故当时,可有, 故,即, 所以:最大值为5. 故选:A. 【答案点睛】 本题主要考查利用导数求函数单调性、极值和最值,以及运用构造函数法和放缩法,同时考查转化思想和解题能力. 3、A 【答案解析】 利用等差的求和公式和等差数列的性质即可求得. 【题目详解】 . 故选:. 【答案点睛】 本题考查等差数列的求和公式和等差数列的性质,考查基本量的计算,难度容易. 4、C 【答案解析】 利用正方体将三视图还原,观察可得最长棱为AD,算出长度. 【题目详解】 几何体的直观图如图所示,易得最长的棱长为 故选:C. 【答案点睛】 本题考查了三视图还原几何体的问题,其中利用正方体作衬托是关键,属于基础题. 5、A 【答案解析】 先化简已知得,再根据题意得出f(x)的最小值正周期T为1×2,再求出ω的值. 【题目详解】 由题得, 设x1,x2为f(x)=2sin(ωx﹣)(ω>0)的两个零点,且的最小值为1, ∴=1,解得T=2; ∴=2, 解得ω=π. 故选A. 【答案点睛】 本题考查了三角恒等变换和三角函数的图象与性质的应用问题,是基础题. 6、B 【答案解析】 由于到直线的距离和等于中点到此直线距离的二倍,所以只需求中点到此直线距离的最大值即可。再得到中点的轨迹是圆,再通过此圆的圆心到直线距离,半径和中点到此直线距离的最大值的关系可以求出。再通过裂项的方法求的前项和,即可通过不等式来求解的取值范围. 【题目详解】 由,得,.设线段的中点,则,在圆上,到直线的距离之和等于点到该直线的距离的两倍,点到直线距离的最大值为圆心到直线的距离与圆的半径之和,而圆的圆心到直线的距离为,,,. . 故选: 【答案点睛】 本题考查了向量数量积,点到直线的距离,数列求和等知识,是一道不错的综合题. 7、D 【答案解析】 利用直线与圆相交求出实数的取值范围,然后利用几何概型的概率公式可求得所求事件的概率. 【题目详解】 由于直线与圆相交,则,解得. 因此,所求概率为. 故选:D. 【答案点睛】 本题考查几何概型概率的计算,同时也考查了利用直线与圆相交求参数,考查计算能力,属于基础题. 8、B 【答案解析】 根据共轭复数定义及复数模的求法,代入化简即可求解. 【题目详解】 在复平面内对应的点的坐标为,则, , ∵, 代入可得, 解得. 故选:B. 【答案点睛】 本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题. 9、A 【答案解析】 作交于点,根据向量比例,利用三角形面积公式,得出与的比例,再由与的比例,可得到结果. 【题目详解】 如图,作交于点, 则,由题意,,,且, 所以 又,所以,,即, 所以本题答案为A. 【答案点睛】 本题考查三角函数与向量的结合,三角形面积公式,属基础题,作出合适的辅助线是本题的关键. 10、C 【答案解析】 根据函数奇偶性可排除AB选项;结合特殊值,即可排除D选项. 【题目详解】 ∵, , ∴函数为奇函数, ∴排除选项A,B; 又∵当时,, 故选:C. 【答案点睛】 本题考查了依据函数解析式选择函数图象,注意奇偶性及特殊值的用法,属于基础题. 11、B 【答案解析】 由题意可得的周期为,当时,,令,则的图像和的图像至少有个交点,画出图像,数形结合,根据,求得的取值范围. 【题目详解】 是定义域为R的偶函数,满足任意, ,令, 又, 为周期为的偶函数, 当时,, 当, 当, 作出图像,如下图所示: 函数至少有三个零点, 则的图像和的图像至少有个交点, ,若, 的图像和的图像只有1个交点,不合题意, 所以,的图像和的图像至少有个交点, 则有,即, . 故选:B. 【答案点睛】 本题考查函数周期性及其应用,解题过程中用到了数形结合方法,这也是高考常考的热点问题,属于中档题. 12、B 【答案解析】 根据题意可得易知,且,解方程可得,再利用即可求解. 【题目详解】 易知,且 故有,则 故选:B 【答案点睛】 本题考查了椭圆的几何性质、抛物线的几何性质,考查了学生的计算能力,属于中档题 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 求出双曲线的右准线与渐近线的交点坐标,并将该交点代入抛物线的方程,即可求出实数的方程. 【题目详解】 双曲线的半焦距为,则双曲线的右准线方程为,渐近线方程为,所以,该双曲线右准线与渐近线的交点为. 由题意得,解得. 故答案为:. 【答案点睛】 本题考查利用抛物线上的点求参数,涉及到双曲线的准线与渐近线方程的应用,考查计算能力,属于中等题. 14、①②③ 【答案解析】 由已知分别结合和差角的正切及正弦余弦公式进行化简即可求解. 【题目详解】 ①∵tan60°=tan(25°+35°), tan25°+tan35°tan25°tan35°; tan25°tan35°, , ②2(sin35°cos25°+cos35°cos65°)=2(sin35°cos25°+cos35°sin25°), =2sin60°; ③tan(45°+15°)=tan60°; 故答案为:①②③ 【答案点睛】 本题主要考查了两角和

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开