分享
四川省成都市2023学年高三下学期一模考试数学试题(含解析).doc
下载文档

ID:35492

大小:1.64MB

页数:18页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
四川省 成都市 2023 学年 下学 期一模 考试 数学试题 解析
2023学年高考数学模拟测试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.如图所示,网络纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该几何体的体积为( ) A.2 B. C.6 D.8 2.在区间上随机取一个数,使得成立的概率为等差数列的公差,且,若,则的最小值为( ) A.8 B.9 C.10 D.11 3.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},则=( ) A.{2,3,4,5} B.{2,3,4,5,6} C.{1,2,3,4,5,6} D.{1,3,4,5,6,7} 4.已知椭圆的焦点分别为,,其中焦点与抛物线的焦点重合,且椭圆与抛物线的两个交点连线正好过点,则椭圆的离心率为( ) A. B. C. D. 5.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”。如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为( )(参考数据: ) A.48 B.36 C.24 D.12 6.过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为( ) A. B. C. D. 7.已知且,函数,若,则( ) A.2 B. C. D. 8.已知函数,关于的方程R)有四个相异的实数根,则的取值范围是(       ) A. B. C. D. 9.中,,为的中点,,,则( ) A. B. C. D.2 10.设分别是双线的左、右焦点,为坐标原点,以为直径的圆与该双曲线的两条渐近线分别交于两点(位于轴右侧),且四边形为菱形,则该双曲线的渐近线方程为( ) A. B. C. D. 11.已知锐角满足则( ) A. B. C. D. 12.已知半径为2的球内有一个内接圆柱,若圆柱的高为2,则球的体积与圆柱的体积的比为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.设复数满足,其中是虚数单位,若是的共轭复数,则____________. 14.已知函数,曲线与直线相交,若存在相邻两个交点间的距离为,则可取到的最大值为__________. 15.点P是△ABC所在平面内一点且在△ABC内任取一点,则此点取自△PBC内的概率是____ 16.已知向量,,,则_________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知函数. (1)若函数不存在单调递减区间,求实数的取值范围; (2)若函数的两个极值点为,,求的最小值. 18.(12分)在中,角所对的边分别是,且. (1)求; (2)若,求. 19.(12分)在平面直角坐标系中,已知椭圆的中心为坐标原点焦点在轴上,右顶点到右焦点的距离与它到右准线的距离之比为. (1)求椭圆的标准方程; (2)若是椭圆上关于轴对称的任意两点,设,连接交椭圆于另一点.求证:直线过定点并求出点的坐标; (3)在(2)的条件下,过点的直线交椭圆于两点,求的取值范围. 20.(12分)电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图: 将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”. (1)根据已知条件完成下面的列联表,并据此资料你是否认为“体育迷”与性别有关? 非体育迷 体育迷 合计 男 女 10 55 合计 (2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X). 附:. P(K2≥k) 0.05 0.01 k 3.841 6.635 21.(12分)如图在四边形中,,,为中点,. (1)求; (2)若,求面积的最大值. 22.(10分)在中,角的对边分别为,且满足. (Ⅰ)求角的大小; (Ⅱ)若的面积为,,求和的值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、A 【答案解析】 先由三视图确定该四棱锥的底面形状,以及四棱锥的高,再由体积公式即可求出结果. 【题目详解】 由三视图可知,该四棱锥为斜着放置的四棱锥,四棱锥的底面为直角梯形,上底为1,下底为2,高为2,四棱锥的高为2, 所以该四棱锥的体积为. 故选A 【答案点睛】 本题主要考查几何的三视图,由几何体的三视图先还原几何体,再由体积公式即可求解,属于常考题型. 2、D 【答案解析】 由题意,本题符合几何概型,只要求出区间的长度以及使不等式成立的的范围区间长度,利用几何概型公式可得概率,即等差数列的公差,利用条件,求得,从而求得,解不等式求得结果. 【题目详解】 由题意,本题符合几何概型,区间长度为6, 使得成立的的范围为,区间长度为2, 故使得成立的概率为, 又,,, 令,则有,故的最小值为11, 故选:D. 【答案点睛】 该题考查的是有关几何概型与等差数列的综合题,涉及到的知识点有长度型几何概型概率公式,等差数列的通项公式,属于基础题目. 3、C 【答案解析】 根据集合的并集、补集的概念,可得结果. 【题目详解】 集合A={x∈N|x2<8x}={x∈N|0<x<8}, 所以集合A={1,2,3,4,5,6,7} B={2,3,6},C={2,3,7}, 故={1,4,5,6}, 所以={1,2,3,4,5,6}. 故选:C. 【答案点睛】 本题考查的是集合并集,补集的概念,属基础题. 4、B 【答案解析】 根据题意可得易知,且,解方程可得,再利用即可求解. 【题目详解】 易知,且 故有,则 故选:B 【答案点睛】 本题考查了椭圆的几何性质、抛物线的几何性质,考查了学生的计算能力,属于中档题 5、C 【答案解析】 由开始,按照框图,依次求出s,进行判断。 【题目详解】 ,故选C. 【答案点睛】 框图问题,依据框图结构,依次准确求出数值,进行判断,是解题关键。 6、C 【答案解析】 联立方程解得M(3,),根据MN⊥l得|MN|=|MF|=4,得到△MNF是边长为4的等边三角形,计算距离得到答案. 【题目详解】 依题意得F(1,0),则直线FM的方程是y=(x-1).由得x=或x=3. 由M在x轴的上方得M(3,),由MN⊥l得|MN|=|MF|=3+1=4 又∠NMF等于直线FM的倾斜角,即∠NMF=60°,因此△MNF是边长为4的等边三角形 点M到直线NF的距离为 故选:C. 【答案点睛】 本题考查了直线和抛物线的位置关系,意在考查学生的计算能力和转化能力. 7、C 【答案解析】 根据分段函数的解析式,知当时,且,由于,则,即可求出. 【题目详解】 由题意知: 当时,且 由于,则可知:, 则, ∴,则, 则. 即. 故选:C. 【答案点睛】 本题考查分段函数的应用,由分段函数解析式求自变量. 8、A 【答案解析】 =,当时时,单调递减,时,单调递增,且当,当, 当时,恒成立,时,单调递增且,方程R)有四个相异的实数根.令=则,,即. 9、D 【答案解析】 在中,由正弦定理得;进而得,在中,由余弦定理可得. 【题目详解】 在中,由正弦定理得,得,又,所以为锐角,所以,, 在中,由余弦定理可得, . 故选:D 【答案点睛】 本题主要考查了正余弦定理的应用,考查了学生的运算求解能力. 10、B 【答案解析】 由于四边形为菱形,且,所以为等边三角形,从而可得渐近线的倾斜角,求出其斜率. 【题目详解】 如图,因为四边形为菱形,,所以为等边三角形,,两渐近线的斜率分别为和. 故选:B 【答案点睛】 此题考查的是求双曲线的渐近线方程,利用了数形结合的思想,属于基础题. 11、C 【答案解析】 利用代入计算即可. 【题目详解】 由已知,,因为锐角,所以,, 即. 故选:C. 【答案点睛】 本题考查二倍角的正弦、余弦公式的应用,考查学生的运算能力,是一道基础题. 12、D 【答案解析】 分别求出球和圆柱的体积,然后可得比值. 【题目详解】 设圆柱的底面圆半径为,则,所以圆柱的体积.又球的体积,所以球的体积与圆柱的体积的比,故选D. 【答案点睛】 本题主要考查几何体的体积求解,侧重考查数学运算的核心素养. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 由于,则. 14、4 【答案解析】 由于曲线与直线相交,存在相邻两个交点间的距离为,所以函数的周期,可得到的取值范围,再由解出的两类不同的值,然后列方程求出,再结合的取值范围可得的最大值. 【题目详解】 ,可得,由,则或,即或,由题意得,所以,则或,所以可取到的最大值为4. 故答案为:4 【答案点睛】 此题考查正弦函数的图像和性质的应用及三角方程的求解,熟练应用三角函数的图像和性质是解题的关键,考查了推理能力和计算能力,属于中档题. 15、 【答案解析】 设是中点,根据已知条件判断出三点共线且是线段靠近的三等分点,由此求得,结合几何概型求得点取自三角形的概率. 【题目详解】 设是中点,因为,所以,所以三点共线且点是线段靠近的三等分点, 故,所以此点取自内的概率是. 故答案为: 【答案点睛】 本小题主要考查三点共线的向量表示,考查几何概型概率计算,属于基础题. 16、2 【答案解析】 由得,算出,再代入算出即可. 【题目详解】 ,,,,解得:, ,则. 故答案为:2 【答案点睛】 本题主要考查了向量的坐标运算,向量垂直的性质,向量的模的计算. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1)(2) 【答案解析】 分析:(1)先求导,再令在上恒成立,得到上恒成立,利用基本不等式得到m的取值范围.(2)先由得到 ,再求得,再构造函数再利用导数求其最小值. 详解:(1)由函数有意义,则 由且不存在单调递减区间,则在上恒成立, 上恒成立 (2)由知, 令,即 由有两个极值点 故为方程的两根, , , 则 由 由 ,则上单调递减 ,即 由知 综上所述,的最小值为. 点睛:(1)本题主要考查利用导数求函数的单调区间和极值,考查利用导数求函数的最值,意在考查学生对这些知识的掌握水平和分析推理能力.(2)本题的难点有两个,其一是求出,其二是构造函数再利用导数求其最小值. 18、(1)(2) 【答案解析】 (1)根据正弦定理到,得到答案. (2)计算,再利用余弦定理

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开