分享
2023学年浙江大学附属中学高考数学必刷试卷(含解析).doc
下载文档

ID:35420

大小:1.63MB

页数:18页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 浙江大学 附属中学 高考 数学 试卷 解析
2023学年高考数学模拟测试卷 考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。 2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。 3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知,复数,,且为实数,则( ) A. B. C.3 D.-3 2.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有(  ) A.12种 B.18种 C.24种 D.64种 3.我们熟悉的卡通形象“哆啦A梦”的长宽比为.在东方文化中通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是( ) A.400米 B.480米 C.520米 D.600米 4.已知集合,,若,则( ) A.4 B.-4 C.8 D.-8 5.已知复数,则( ) A. B. C. D.2 6.已知命题:,,则为( ) A., B., C., D., 7.已知非零向量、,若且,则向量在向量方向上的投影为( ) A. B. C. D. 8.要得到函数的导函数的图像,只需将的图像( ) A.向右平移个单位长度,再把各点的纵坐标伸长到原来的3倍 B.向右平移个单位长度,再把各点的纵坐标缩短到原来的倍 C.向左平移个单位长度,再把各点的纵坐标缩短到原来的倍 D.向左平移个单位长度,再把各点的纵坐标伸长到原来的3倍 9. 的内角的对边分别为,已知,则角的大小为( ) A. B. C. D. 10.若θ是第二象限角且sinθ =,则= A. B. C. D. 11.定义在R上的偶函数f(x)满足f(x+2)=f(x),当x∈[﹣3,﹣2]时,f(x)=﹣x﹣2,则( ) A. B.f(sin3)<f(cos3) C. D.f(2020)>f(2019) 12.已知六棱锥各顶点都在同一个球(记为球)的球面上,且底面为正六边形,顶点在底面上的射影是正六边形的中心,若,,则球的表面积为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.在平面直角坐标系xOy中,已知双曲线(a>0)的一条渐近线方程为,则a=_______. 14.已知双曲线的一条渐近线为,且经过抛物线的焦点,则双曲线的标准方程为______. 15.若函数在和上均单调递增,则实数的取值范围为________. 16.已知是抛物线的焦点,是上一点,的延长线交轴于点.若为的中点,则_________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)记抛物线的焦点为,点在抛物线上,且直线的斜率为1,当直线过点时,. (1)求抛物线的方程; (2)若,直线与交于点,,求直线的斜率. 18.(12分)设函数其中 (Ⅰ)若曲线在点处切线的倾斜角为,求的值; (Ⅱ)已知导函数在区间上存在零点,证明:当时,. 19.(12分)已知是公比为的无穷等比数列,其前项和为,满足,________.是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由. 从①,②,③这三个条件中任选一个,补充在上面问题中并作答. 20.(12分)2019年入冬时节,长春市民为了迎接2023年北京冬奥会,增强身体素质,积极开展冰上体育锻炼.现从速滑项目中随机选出100名参与者,并由专业的评估机构对他们的锻炼成果进行评估打分(满分为100分)并且认为评分不低于80分的参与者擅长冰上运动,得到如图所示的频率分布直方图: (1)求的值; (2)将选取的100名参与者的性别与是否擅长冰上运动进行统计,请将下列列联表补充完整,并判断能否在犯错误的概率在不超过0.01的前提下认为擅长冰上运动与性别有关系? 擅长 不擅长 合计 男性 30 女性 50 合计 100 0.15 0.10 0.05 0.025 0.010 0.005 0.001 2.072 2.706 3.841 5.024 6.635 7.879 10.828 (,其中) 21.(12分)如图,在四棱锥中,底面是边长为2的菱形,,平面平面,点为棱的中点. (Ⅰ)在棱上是否存在一点,使得平面,并说明理由; (Ⅱ)当二面角的余弦值为时,求直线与平面所成的角. 22.(10分)已知. (1)当时,求不等式的解集; (2)若时不等式成立,求的取值范围. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、B 【答案解析】 把和 代入再由复数代数形式的乘法运算化简,利用虚部为0求得m值. 【题目详解】 因为为实数,所以,解得. 【答案点睛】 本题考查复数的概念,考查运算求解能力. 2、C 【答案解析】 根据题意,分2步进行分析:①,将4人分成3组,②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,将剩下的2组全排列,安排其他的2项工作,由分步计数原理计算可得答案. 【题目详解】 解:根据题意,分2步进行分析: ①,将4人分成3组,有种分法; ②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,有2种情况, 将剩下的2组全排列,安排其他的2项工作,有种情况, 此时有种情况, 则有种不同的安排方法; 故选:C. 【答案点睛】 本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题. 3、B 【答案解析】 根据题意,画出几何关系,结合各线段比例可先求得第一展望台和第二展望台的距离,进而由比例即可求得该塔的实际高度. 【题目详解】 设第一展望台到塔底的高度为米,塔的实际高度为米,几何关系如下图所示: 由题意可得,解得; 且满足, 故解得塔高米,即塔高约为480米. 故选:B 【答案点睛】 本题考查了对中国文化的理解与简单应用,属于基础题. 4、B 【答案解析】 根据交集的定义,,可知,代入计算即可求出. 【题目详解】 由,可知, 又因为, 所以时,, 解得. 故选:B. 【答案点睛】 本题考查交集的概念,属于基础题. 5、C 【答案解析】 根据复数模的性质即可求解. 【题目详解】 , , 故选:C 【答案点睛】 本题主要考查了复数模的性质,属于容易题. 6、C 【答案解析】 根据全称量词命题的否定是存在量词命题,即得答案. 【题目详解】 全称量词命题的否定是存在量词命题,且命题:,, . 故选:. 【答案点睛】 本题考查含有一个量词的命题的否定,属于基础题. 7、D 【答案解析】 设非零向量与的夹角为,在等式两边平方,求出的值,进而可求得向量在向量方向上的投影为,即可得解. 【题目详解】 ,由得,整理得, ,解得, 因此,向量在向量方向上的投影为. 故选:D. 【答案点睛】 本题考查向量投影的计算,同时也考查利用向量的模计算向量的夹角,考查计算能力,属于基础题. 8、D 【答案解析】 先求得,再根据三角函数图像变换的知识,选出正确选项. 【题目详解】 依题意,所以由向左平移个单位长度,再把各点的纵坐标伸长到原来的3倍得到的图像. 故选:D 【答案点睛】 本小题主要考查复合函数导数的计算,考查诱导公式,考查三角函数图像变换,属于基础题. 9、A 【答案解析】 先利用正弦定理将边统一化为角,然后利用三角函数公式化简,可求出解B. 【题目详解】 由正弦定理可得,即,即有,因为,则,而,所以. 故选:A 【答案点睛】 此题考查了正弦定理和三角函数的恒等变形,属于基础题. 10、B 【答案解析】 由θ是第二象限角且sinθ =知:,. 所以. 11、B 【答案解析】 根据函数的周期性以及x∈[﹣3,﹣2]的解析式,可作出函数f(x)在定义域上的图象,由此结合选项判断即可. 【题目详解】 由f(x+2)=f(x),得f(x)是周期函数且周期为2, 先作出f(x)在x∈[﹣3,﹣2]时的图象,然后根据周期为2依次平移, 并结合f(x)是偶函数作出f(x)在R上的图象如下, 选项A,, 所以,选项A错误; 选项B,因为,所以, 所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),选项B正确; 选项C,, 所以,即, 选项C错误; 选项D,,选项D错误. 故选:B. 【答案点睛】 本题考查函数性质的综合运用,考查函数值的大小比较,考查数形结合思想,属于中档题. 12、D 【答案解析】 由题意,得出六棱锥为正六棱锥,求得,再结合球的性质,求得球的半径,利用表面积公式,即可求解. 【题目详解】 由题意,六棱锥底面为正六边形,顶点在底面上的射影是正六边形的中心,可得此六棱锥为正六棱锥, 又由,所以, 在直角中,因为,所以, 设外接球的半径为, 在中,可得,即,解得, 所以外接球的表面积为. 故选:D. 【答案点睛】 本题主要考查了正棱锥的几何结构特征,以及外接球的表面积的计算,其中解答中熟记几何体的结构特征,熟练应用球的性质求得球的半径是解答的关键,着重考查了空间想象能力,以及推理与计算能力,属于中档试题. 二、填空题:本题共4小题,每小题5分,共20分。 13、3 【答案解析】 双曲线的焦点在轴上,渐近线为,结合渐近线方程为可求. 【题目详解】 因为双曲线(a>0)的渐近线为,且一条渐近线方程为, 所以. 故答案为:. 【答案点睛】 本题主要考查双曲线的渐近线,明确双曲线的焦点位置,写出双曲线的渐近线方程的对应形式是求解的关键,侧重考查数学运算的核心素养. 14、 【答案解析】 设以直线为渐近线的双曲线的方程为,再由双曲线经过抛物线焦点,能求出双曲线方程. 【题目详解】 解:设以直线为渐近线的双曲线的方程为, ∵双曲线经过抛物线焦点, ∴, ∴双曲线方程为, 故答案为:. 【答案点睛】 本题主要考查双曲线方程的求法,考查抛物线、双曲线简单性质的合理运用,属于中档题. 15、 【答案解析】 化简函数,求出在上的单调递增区间,然后根据在和上均单调递增,列出不等式求解即可. 【题目详解】 由知, 当时,在和上单调递增, 在和上均单调递增, , , 的取值范围为:. 故答案为:. 【答案点睛】 本题主要考查了三角函数的图象与性质,关键是根据函数的单调性列出关于m的方程组,属中档题. 16、 【答案解析】 由题意可得,又由于为的中点,且点在轴上,所以可得点的横坐标,代入抛物线方程中可求点的纵坐标,从而可求出点的坐标,再利用两点间的距离公式可求得结果. 【题目详解】 解:因为是抛物线的焦点,所以, 设点的坐标为, 因为为的中点,而点的横坐标为0, 所以,所以,解得, 所以点的坐标为 所以, 故答案为: 【答案点睛】 此题考查抛物线的性质,中点坐标公式,属于基础题. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1)(2)0

此文档下载收益归作者所有

下载文档
猜你喜欢
你可能关注的文档
收起
展开